953 resultados para Path Integral, Molecular Dynamics, Statistical Mechanics
Resumo:
Experimental studies on epoxies report that the microstructure consists of highly crosslinked localized regions connected with a dispersed phase of low crosslink density. The various thermo-mechanical properties of epoxies might be affected by the crosslink distribution. But as experiments cannot report the exact number of crosslinked covalent bonds present in the structure, molecular dynamics is thus being used in this work to determine the influence of crosslink distribution on thermo-mechanical properties. Molecular dynamics and molecular mechanics simulations are used to establish wellequilibrated molecular models of EPON 862-DETDA epoxy system with a range of crosslink densities and various crosslink distributions. Crosslink distributions are being varied by forming differently crosslinked localized clusters and then by forming different number of crosslinks interconnecting the clusters. Simulations are subsequently used to predict the volume shrinkage, thermal expansion coefficients, and elastic properties of each of the crosslinked systems. The results indicate that elastic properties increase with increasing levels of overall crosslink density and the thermal expansion coefficient decreases with overall crosslink density, both above and below the glass transition temperature. Elastic moduli and coefficients of linear thermal expansion values were found to be different for systems with same overall crosslink density but having different crosslink distributions, thus indicating an effect of the epoxy nanostructure on physical properties. The values of thermo-mechanical properties for all the crosslinked systems are within the range of values reported in literature.
Resumo:
PMR-15 polyimide is a polymer that is used as a matrix in composites. These composites with PMR-15 matrices are called advanced polymer matrix composite that is abundantly used in the aerospace and electronics industries because of its high temperature resistivity. Apart from having high temperature sustainability, PMR-15 composites also display good thermal-oxidative stability, mechanical properties, processability and low costs, which makes it a suitable material for manufacturing aircraft structures. PMR-15 uses the reverse Diels-Alder (RDA) method for crosslinking which provides it with the groundwork for its distinctive thermal stability and a range of 280-300 degree Centigrade use temperature. Regardless of such desirable properties, this material has a number of limitations that compromises its application on a large scale basis. PMR-15 composites has been known to be very vulnerable to micro-cracking at inter and intra-laminar cracking. But the major factor that hinders its demand is PMR-15's carcinogenic constituent, methylene dianilineme (MDA), also a liver toxin. The necessity of providing a safe working environment during its production adds up to the cost of this material. In this study, Molecular Dynamics and Energy Minimization techniques are utilized to simulate a structure of PMR-15 at a given density of 1.324 g/cc and an attempt to recreate the polyimide to reduce the number of experimental testing and hence subdue the health hazards as well as the cost involved in its production. Even though this study does not involve in validating any mechanical properties of the model, it could be used in future for the validation of its properties and further testing for different properties like aging, microcracking, creep etc.
Resumo:
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
Ras proteins serve as crucial signaling modulators in cell proliferation through their ability to hydrolyze GTP and exist in a GTP “on” state and GTP “off” state. There are three different human Ras isoforms: H-ras, N-ras and K-ras (4A and 4B). Although their sequence identity is very high at the catalytic domain, these isoforms differ in their ability to activate different effectors and hence different signaling pathways. Much of the previous work on this topic has attributed this difference to the hyper variable region of Ras proteins, which contains most of the sequence variance among the isoforms and encodes specificity for differential distribution in the membrane. However, we hypothesize that sequence variation on lobe II of Ras catalytic domain alters dynamics and leads to differential preference for different effectors or modulators. In this work, we used all atom molecular dynamics to analyze the dynamics in the catalytic domain of H-ras and K-ras. We have also analyzed the dynamics of a transforming mutant of H-ras and K-ras and further studied the dynamics of an effectorselective mutant of H-ras. Collectively we have determined that wild type K-ras is more dynamic than H-ras and that the structure of the effector binding loop more closely resembles that of the T35S Raf-selective mutant, possibly giving us a new view and insight into the v mode of effector specificity. Furthermore we have determined that specific mutations at the same location perturb the conformational equilibrium differently in H-ras and K-ras and that an enhanced oncogenic potential may arise from different structural perturbations for each point mutation of a specific isoform.
Resumo:
The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W
Resumo:
El cerebro humano es probablemente uno de los sistemas más complejos a los que nos enfrentamos en la actualidad, si bien es también uno de los más fascinantes. Sin embargo, la compresión de cómo el cerebro organiza su actividad para llevar a cabo tareas complejas es un problema plagado de restos y obstáculos. En sus inicios la neuroimagen y la electrofisiología tenían como objetivo la identificación de regiones asociadas a activaciones relacionadas con tareas especificas, o con patrones locales que variaban en el tiempo dada cierta actividad. Sin embargo, actualmente existe un consenso acerca de que la actividad cerebral tiene un carácter temporal multiescala y espacialmente extendido, lo que lleva a considerar el cerebro como una gran red de áreas cerebrales coordinadas, cuyas conexiones funcionales son continuamente creadas y destruidas. Hasta hace poco, el énfasis de los estudios de la actividad cerebral funcional se han centrado en la identidad de los nodos particulares que forman estas redes, y en la caracterización de métricas de conectividad entre ellos: la hipótesis subyacente es que cada nodo, que es una representación mas bien aproximada de una región cerebral dada, ofrece a una única contribución al total de la red. Por tanto, la neuroimagen funcional integra los dos ingredientes básicos de la neuropsicología: la localización de la función cognitiva en módulos cerebrales especializados y el rol de las fibras de conexión en la integración de dichos módulos. Sin embargo, recientemente, la estructura y la función cerebral han empezado a ser investigadas mediante la Ciencia de la Redes, una interpretación mecánico-estadística de una antigua rama de las matemáticas: La teoría de grafos. La Ciencia de las Redes permite dotar a las redes funcionales de una gran cantidad de propiedades cuantitativas (robustez, centralidad, eficiencia, ...), y así enriquecer el conjunto de elementos que describen objetivamente la estructura y la función cerebral a disposición de los neurocientíficos. La conexión entre la Ciencia de las Redes y la Neurociencia ha aportado nuevos puntos de vista en la comprensión de la intrincada anatomía del cerebro, y de cómo las patrones de actividad cerebral se pueden sincronizar para generar las denominadas redes funcionales cerebrales, el principal objeto de estudio de esta Tesis Doctoral. Dentro de este contexto, la complejidad emerge como el puente entre las propiedades topológicas y dinámicas de los sistemas biológicos y, específicamente, en la relación entre la organización y la dinámica de las redes funcionales cerebrales. Esta Tesis Doctoral es, en términos generales, un estudio de cómo la actividad cerebral puede ser entendida como el resultado de una red de un sistema dinámico íntimamente relacionado con los procesos que ocurren en el cerebro. Con este fin, he realizado cinco estudios que tienen en cuenta ambos aspectos de dichas redes funcionales: el topológico y el dinámico. De esta manera, la Tesis está dividida en tres grandes partes: Introducción, Resultados y Discusión. En la primera parte, que comprende los Capítulos 1, 2 y 3, se hace un resumen de los conceptos más importantes de la Ciencia de las Redes relacionados al análisis de imágenes cerebrales. Concretamente, el Capitulo 1 está dedicado a introducir al lector en el mundo de la complejidad, en especial, a la complejidad topológica y dinámica de sistemas acoplados en red. El Capítulo 2 tiene como objetivo desarrollar los fundamentos biológicos, estructurales y funcionales del cerebro, cuando éste es interpretado como una red compleja. En el Capítulo 3, se resumen los objetivos esenciales y tareas que serán desarrolladas a lo largo de la segunda parte de la Tesis. La segunda parte es el núcleo de la Tesis, ya que contiene los resultados obtenidos a lo largo de los últimos cuatro años. Esta parte está dividida en cinco Capítulos, que contienen una versión detallada de las publicaciones llevadas a cabo durante esta Tesis. El Capítulo 4 está relacionado con la topología de las redes funcionales y, específicamente, con la detección y cuantificación de los nodos mas importantes: aquellos denominados “hubs” de la red. En el Capítulo 5 se muestra como las redes funcionales cerebrales pueden ser vistas no como una única red, sino más bien como una red-de-redes donde sus componentes tienen que coexistir en una situación de balance funcional. De esta forma, se investiga cómo los hemisferios cerebrales compiten para adquirir centralidad en la red-de-redes, y cómo esta interacción se mantiene (o no) cuando se introducen fallos deliberadamente en la red funcional. El Capítulo 6 va un paso mas allá al considerar las redes funcionales como sistemas vivos. En este Capítulo se muestra cómo al analizar la evolución de la topología de las redes, en vez de tratarlas como si estas fueran un sistema estático, podemos caracterizar mejor su estructura. Este hecho es especialmente relevante cuando se quiere tratar de encontrar diferencias entre grupos que desempeñan una tarea de memoria, en la que las redes funcionales tienen fuertes fluctuaciones. En el Capítulo 7 defino cómo crear redes parenclíticas a partir de bases de datos de actividad cerebral. Este nuevo tipo de redes, recientemente introducido para estudiar las anormalidades entre grupos de control y grupos anómalos, no ha sido implementado nunca en datos cerebrales y, en este Capítulo explico cómo hacerlo cuando se quiere evaluar la consistencia de la dinámica cerebral. Para concluir esta parte de la Tesis, el Capítulo 8 se centra en la relación entre las propiedades topológicas de los nodos dentro de una red y sus características dinámicas. Como mostraré más adelante, existe una relación entre ellas que revela que la posición de un nodo dentro una red está íntimamente correlacionada con sus propiedades dinámicas. Finalmente, la última parte de esta Tesis Doctoral está compuesta únicamente por el Capítulo 9, el cual contiene las conclusiones y perspectivas futuras que pueden surgir de los trabajos expuestos. En vista de todo lo anterior, espero que esta Tesis aporte una perspectiva complementaria sobre uno de los más extraordinarios sistemas complejos frente a los que nos encontramos: El cerebro humano. ABSTRACT The human brain is probably one of the most complex systems we are facing, thus being a timely and fascinating object of study. Characterizing how the brain organizes its activity to carry out complex tasks is highly non-trivial. While early neuroimaging and electrophysiological studies typically aimed at identifying patches of task-specific activations or local time-varying patterns of activity, there has now been consensus that task-related brain activity has a temporally multiscale, spatially extended character, as networks of coordinated brain areas are continuously formed and destroyed. Up until recently, though, the emphasis of functional brain activity studies has been on the identity of the particular nodes forming these networks, and on the characterization of connectivity metrics between them, the underlying covert hypothesis being that each node, constituting a coarse-grained representation of a given brain region, provides a unique contribution to the whole. Thus, functional neuroimaging initially integrated the two basic ingredients of early neuropsychology: localization of cognitive function into specialized brain modules and the role of connection fibres in the integration of various modules. Lately, brain structure and function have started being investigated using Network Science, a statistical mechanics understanding of an old branch of pure mathematics: graph theory. Network Science allows endowing networks with a great number of quantitative properties, thus vastly enriching the set of objective descriptors of brain structure and function at neuroscientists’ disposal. The link between Network Science and Neuroscience has shed light about how the entangled anatomy of the brain is, and how cortical activations may synchronize to generate the so-called functional brain networks, the principal object under study along this PhD Thesis. Within this context, complexity appears to be the bridge between the topological and dynamical properties of biological systems and, more specifically, the interplay between the organization and dynamics of functional brain networks. This PhD Thesis is, in general terms, a study of how cortical activations can be understood as the output of a network of dynamical systems that are intimately related with the processes occurring in the brain. In order to do that, I performed five studies that encompass both the topological and the dynamical aspects of such functional brain networks. In this way, the Thesis is divided into three major parts: Introduction, Results and Discussion. In the first part, comprising Chapters 1, 2 and 3, I make an overview of the main concepts of Network Science related to the analysis of brain imaging. More specifically, Chapter 1 is devoted to introducing the reader to the world of complexity, specially to the topological and dynamical complexity of networked systems. Chapter 2 aims to develop the biological, topological and functional fundamentals of the brain when it is seen as a complex network. Next, Chapter 3 summarizes the main objectives and tasks that will be developed along the forthcoming Chapters. The second part of the Thesis is, in turn, its core, since it contains the results obtained along these last four years. This part is divided into five Chapters, containing a detailed version of the publications carried out during the Thesis. Chapter 4 is related to the topology of functional networks and, more specifically, to the detection and quantification of the leading nodes of the network: the hubs. In Chapter 5 I will show that functional brain networks can be viewed not as a single network, but as a network-of-networks, where its components have to co-exist in a trade-off situation. In this way, I investigate how the brain hemispheres compete for acquiring the centrality of the network-of-networks and how this interplay is maintained (or not) when failures are introduced in the functional network. Chapter 6 goes one step beyond by considering functional networks as living systems. In this Chapter I show how analyzing the evolution of the network topology instead of treating it as a static system allows to better characterize functional networks. This fact is especially relevant when trying to find differences between groups performing certain memory tasks, where functional networks have strong fluctuations. In Chapter 7 I define how to create parenclitic networks from brain imaging datasets. This new kind of networks, recently introduced to study abnormalities between control and anomalous groups, have not been implemented with brain datasets and I explain in this Chapter how to do it when evaluating the consistency of brain dynamics. To conclude with this part of the Thesis, Chapter 8 is devoted to the interplay between the topological properties of the nodes within a network and their dynamical features. As I will show, there is an interplay between them which reveals that the position of a node in a network is intimately related with its dynamical properties. Finally, the last part of this PhD Thesis is composed only by Chapter 9, which contains the conclusions and future perspectives that may arise from the exposed results. In view of all, I hope that reading this Thesis will give a complementary perspective of one of the most extraordinary complex systems: The human brain.
Resumo:
Cation-π interactions are important forces in molecular recognition by biological receptors, enzyme catalysis, and crystal engineering. We have harnessed these interactions in designing molecular systems with circular arrangement of benzene units that are capable of acting as ionophores and models for biological receptors. [n]Collarenes are promising candidates with high selectivity for a specific cation, depending on n, because of their structural rigidity and well-defined cavity size. The interaction energies of [n]collarenes with cations have been evaluated by using ab initio calculations. The selectivity of these [n]collarenes in aqueous solution was revealed by using statistical perturbation theory in conjunction with Monte Carlo and molecular dynamics simulations. It has been observed that in [n]collarenes the ratio of the interaction energies of a cation with it and the cation with the basic building unit (benzene) can be correlated to its ion selectivity. We find that collarenes are excellent and efficient ionophores that bind cations through cation-π interactions. [6]Collarene is found to be a selective host for Li+ and Mg2+, [8]collarene for K+ and Sr2+, and [10]collarene for Cs+ and Ba2+. This finding indicates that [10]collarene and [8]collarene could be used for effective separation of highly radioactive isotopes, 137Cs and 90Sr, which are major constituents of nuclear wastes. More interestingly, collarenes of larger cavity size can be useful in capturing organic cations. [12]Collarene exhibits a pronounced affinity for tetramethylammonium cation and acetylcholine, which implies that it could serve as a model for acetylcholinestrase. Thus, collarenes can prove to be novel and effective ionophores/model-receptors capable of heralding a new direction in molecular recognition and host-guest chemistry.
Resumo:
Advances in computer power, methodology, and empirical force fields now allow routine “stable” nanosecond-length molecular dynamics simulations of DNA in water. The accurate representation of environmental influences on structure remains a major, unresolved issue. In contrast to simulations of A-DNA in water (where an A-DNA to B-DNA transition is observed) and in pure ethanol (where disruption of the structure is observed), A-DNA in ≈85% ethanol solution remains in a canonical A-DNA geometry as expected. The stabilization of A-DNA by ethanol is likely due to disruption of the spine of hydration in the minor groove and the presence of ion-mediated interhelical bonds and extensive hydration across the major groove.
Resumo:
The prevailing paradigm for G protein-coupled receptors is that each receptor is narrowly tuned to its ligand and closely related agonists. An outstanding problem is whether this paradigm applies to olfactory receptor (ORs), which is the largest gene family in the genome, in which each of 1,000 different G protein-coupled receptors is believed to interact with a range of different odor molecules from the many thousands that comprise “odor space.” Insights into how these interactions occur are essential for understanding the sense of smell. Key questions are: (i) Is there a binding pocket? (ii) Which amino acid residues in the binding pocket contribute to peak affinities? (iii) How do affinities change with changes in agonist structure? To approach these questions, we have combined single-cell PCR results [Malnic, B., Hirono, J., Sato, T. & Buck, L. B. (1999) Cell 96, 713–723] and well-established molecular dynamics methods to model the structure of a specific OR (OR S25) and its interactions with 24 odor compounds. This receptor structure not only points to a likely odor-binding site but also independently predicts the two compounds that experimentally best activate OR S25. The results provide a mechanistic model for olfactory transduction at the molecular level and show how the basic G protein-coupled receptor template is adapted for encoding the enormous odor space. This combined approach can significantly enhance the identification of ligands for the many members of the OR family and also may shed light on other protein families that exhibit broad specificities, such as chemokine receptors and P450 oxidases.
Resumo:
How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.
Resumo:
Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.
Resumo:
O estudo da microestrutura e dinâmica molecular de polímeros conjugados é de grande importância para o entendimento das propriedades físicas desta classe de materiais. No presente trabalho utilizou-se técnicas de ressonância magnética nuclear em baixo e alto campo para elucidar os processos de dinâmica molecular e cristalização do polímero Poly(3-(2’-ethylhexyl)thiophene) - P3EHT. O P3EHT é um polímero modelo para tal estudo, pois apresenta temperatura de fusão bem inferior a sua temperatura de degradação. Esta característica permite acompanhar os processos de cristalização in situ utilizando RMN. Além disso, sua similaridade ao já popular P3HT o torna um importante candidato a camada ativa em dispositivos eletrônicos orgânicos. O completo assinalamento do espectro de 13C para o P3EHT foi realizado utilizando as técnicas de defasamento dipolar e HETCOR. Os processos de dinâmica molecular, por sua vez, foram sondados utilizando DIPSHIFT. Observou-se um gradiente de mobilidade na cadeia lateral do polímero. Além disso, os baixos valores de parametros de ordem obtidos em comparação a experimentos similares realizados no P3HT na literatura indicam um aparente aumento no volume livre entre cadeias consecutivas na fase cristalina. Isso indica que a presença do grupo etil adicional no P3EHT causa um completo rearranjo das moléculas e dificulta seu empacotamento. Constatou-se ainda pouca variação das curvas de DIPSHIFT para os carbonos da cadeia lateral como função do método de excitação utilizado, o que aponta para um polímero que apresenta cadeia lateral móvel mesmo em sua fase cristalina. Os dados de dinâmica molecular foram corroborados por medidas de T1, T1ρ e TCH. Utilizando filtros dipolares em baixo campo observou-se três temperaturas de transição para o P3EHT: 250 K, 325 K e 350 K. A cristalização desse material é um processo lento. Verificou-se que o mesmo pode se estender por até até 24h a temperatura ambiente. Mudanças no espectro de 13C utilizando CPMAS em alto campo indicam um ordenamento dos anéis tiofeno (empacotamento π – π) como o principal processo de cristalização para o P3EHT.
Resumo:
Simulações de sais de carbonato fundidos pelo método de Dinâmica Molecular (MD) foram efetuadas com o modelo polarizável de cargas flutuantes (FC). O modelo de cargas flutuantes implementa os efeitos de polarização pelo método de Lagrangiano estendido, onde as variáveis extras são as próprias cargas parciais do íon poliatômico. O modelo FC foi parametrizado por meio de cálculos ab inito, aplicado ao ânion carbonato. Cálculos de Química Quântica ab initio foram utilizados para corroborar o modelo proposto para o ânion carbonato. Os sistemas investigados consistem em misturas de carbonatos alcalinos fundidos, Li2CO3/K2CO3, os quais são utilizados como eletrólitos em células a combustível. As simulações MD foram utilizadas para verificar o efeito da polarização dos ânions sobre a estrutura e dinâmica do líquido. Estudamos o efeito da inclusão de polarização sobre a condutividade do eletrólito.
Resumo:
"An unabridged and unaltered republication of the first edition ... originally published ... in 1906."