945 resultados para Partly inbred lines
Resumo:
The boreal forest of western Canada is being dissected by seismic lines used for oil and gas exploration. The vast amount of edge being created is leading to concerns that core habitat will be reduced for forest interior species for extended periods of time. The Ovenbird (Seiurus aurocapilla) is a boreal songbird known to be sensitive to newly created seismic lines because it does not include newly cut lines within its territory. We examined multiple hypotheses to explain potential mechanisms causing this behavior by mapping Ovenbird territories near lines with varying states of vegetation regeneration. The best model to explain line exclusion behavior included the number of neighboring conspecifics, the amount of bare ground, leaf-litter depth, and canopy closure. Ovenbirds exclude recently cut seismic lines from their territories because of lack of protective cover (lower tree and shrub cover) and because of reduced food resources due to large areas of bare ground. Food reduction and perceived predation risk effects seem to be mitigated once leaf litter (depth and extent of cover) and woody vegetation cover are restored to forest interior levels. However, as conspecific density increases, lines are more likely to be used as landmarks to demarcate territorial boundaries, even when woody vegetation cover and leaf litter are restored. This behavior can reduce territory density near seismic lines by changing the spatial distribution of territories. Landmark effects are longer lasting than the effects from reduced food or perceived predation risk because canopy height and tree density take >40 years to recover to forest interior levels. Mitigation of seismic line impacts on Ovenbirds should focus on restoring forest cover as quickly as possible after line cutting.
The influence of spatial variability of boundary-layer moisture on tropical continental squall lines
Resumo:
Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.
Resumo:
This paper addresses the question of whether p-hydroxybenzoic acid, the common metabolite of parabens, possesses oestrogenic activity in human breast cancer cell lines. The alkyl esters of p-hydroxybenzoic acid (parabens) are used widely as preservatives in consumer products to which the human population is exposed and have been shown previously to possess oestrogenic activity and to be present in human breast tumour tissue, which is an oestrogen-responsive tissue. Recent work has shown p-hydroxybenzoic acid to give an oestrogenic response in the rodent uterotrophic assay. We report here that p-hydroxybenzoic acid possesses oestrogenic activity in a panel of assays in human breast cancer cell lines. p-Hydroxybenzoic acid was able to displace [H-3]oestradiol from cytosolic oestrogen receptor of MCF7 human breast cancer cells by 54% at 5 x 10(6)-fold molar excess and by 99% at 10(7)-fold molar excess. It was able to increase the expression of a stably integrated oestrogen responsive reporter gene (ERE-CAT) at a concentration of 5 x 10(-4) M in MCF7 cells after 24 h and 7 days, which could be inhibited by the anti-oestrogen ICI 182 780 (Faslodex, fulvestrant). Proliferation of two human breast cancer cell lines (MCF7, ZR-75-1) could be increased by 10(-5) M p-hydroxybenzoic acid. Following on from previous studies showing a decrease in oestrogenic activity of parabens with shortening of the linear alkyl chain length, this study has compared the oestrogenic activity of p-hydroxybenzoic acid where the alkyl grouping is no longer present with methylparaben, which has the shortest alkyl group. Intrinsic oestrogenic activity of p-hydroxybenzoic acid was similar to that of methylparaben in terms of relative binding to the oestrogen receptor but its oestrogenic activity on gene expression and cell proliferation was lower than that of methylparaben. It can be concluded that removal of the ester group from parabens does not abrogate its oestrogenic activity and that p-hydroxybenzoic acid can give oestrogenic responses in human breast cancer cells. Copyright (C) 2005 John Wiley & Sons, Ltd.