881 resultados para Pare to archived genetic algorithm
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
Resumo:
We discuss the parametrisation of am-plitude and phase genes corre-sponding to space encoded femto-second transients in the wavelet domain. Differential evolution is used to improve the speed of con-vergence of the genetic algorithm. We discuss prospects of bio-molecular control using such methodology.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.
Resumo:
The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.
Resumo:
Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
The availability of crop specimens archived in herbaria and old seed collections represent valuable resources for the analysis of plant genetic diversity and crop domestication. The ability to extract ancient DNA (aDNA) from such samples has recently allowed molecular genetic investigations to be undertaken in ancient materials. While analyses of aDNA initially focused on the use of markers which occur in multiple copies such as the internal transcribed spacer region (ITS) within ribosomal DNA and those requiring amplification of short DNA regions of variable length such as simple sequence repeats (SSRs), emphasis is now moving towards the genotyping of single nucleotide polymorphisms (SNPs), traditionally undertaken in aDNA by Sanger sequencing. Here, using a panel of barley aDNA samples previously surveyed by Sanger sequencing for putative causative SNPs within the flowering-time gene PPD-H1, we assess the utility of the Kompetitive Allele Specific PCR (KASP) genotyping platform for aDNA analysis. We find KASP to out-perform Sanger sequencing in the genotyping of aDNA samples (78% versus 61% success, respectively), as well as being robust to contamination. The small template size (≥46 bp) and one-step, closed-tube amplification/genotyping process make this platform ideally suited to the genotypic analysis of aDNA, a process which is often hampered by template DNA degradation and sample cross-contamination. Such attributes, as well as its flexibility of use and relatively low cost, make KASP particularly relevant to the genetic analysis of aDNA samples. Furthermore, KASP provides a common platform for the genotyping and analysis of corresponding SNPs in ancient, landrace and modern plant materials. The extended haplotype analysis of PPD-H1 undertaken here (allelic variation at which is thought to be important for the spread of domestication and local adaptation) provides further resolution to the previously identified geographic cline of flowering-time allele distribution, illustrating how KASP can be used to aid genetic analyses of aDNA from plant species. We further demonstrate the utility of KASP by genotyping ten additional genetic markers diagnostic for morphological traits in barley, shedding light on the phenotypic traits, alleles and allele combinations present in these unviable ancient specimens, as well as their geographic distributions.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.
Resumo:
Conflicting results have been reported as to whether genetic variations (Val66Met and C270T) of the brain-derived neurotrophic factor gene (RDNF) confer susceptibility to Alzheimer`s disease (AD). We genotyped these polymorphisms in a Japanese sample of 657 patients with AD and 525 controls, and obtained weak evidence of association for Val66Met (P = 0.063), but not for C270T. After stratification by sex, we found a significant allelic association between Val66Met and AD in women (P = 0.017), but not in men. To confirm these observations, we collected genotyping data for each sex from 16 research centers worldwide (4,711 patients and 4,537 controls in total). The meta-analysis revealed that there was a clear sex difference in the allelic association; the Met66 allele confers susceptibility to AD in women (odds ratio = 1.14, 95% CI 1.05-1.24, P = 0.002), but not in men. Our results provide evidence that the Met66 allele of BDNF has a sexually dimorphic effect on susceptibility to AD. (C) 2009 Wiley-Liss, Inc.
Resumo:
In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (I the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry`s own practice. (c) 2006 Elsevier Ltd. All rights reserved.