983 resultados para Parasitic fungi
Resumo:
Allergies to animals are behind the house-dust mite allergy the most frequent cause for indoor allergic respiratory symptoms. In case of persistent allergen exposure symptoms like rhinitis, itch of the skin or asthma are usually not perceived intensively and, thus, can not assigned to an animal or an animal source. In many cases animal allergies are based on a perennial allergen exposure. Although most likely all animals may be the cause of a respiratory allergy, cats, dogs, and horses are the most frequent elicitors. The diagnosis of an allergy to an animal needs to be set with due care, since it often causes emotional reactions, diverse conflicts, but also lack of understanding. Rarer are allergies to fungi even though fungi as allergen sources since decades belong to the differential diagnosis in respiratory allergies particularly in case of late summer asthma. Fungi are ubiquitous and present indoors as well as outdoors. Unfortunately the field of fungal allergy is not well explored and diagnostic possibilities are limited. The most promising therapy in both allergy to animals and fungi would be complete avoiding of contact with the respective allergen source. Indeed many preventive recommendations are given; however, realization is often not successful. In selected cases specific immunotherapy for both animal and fungal allergies is a potential therapeutic option.
Resumo:
Extracellular enzymes that white-rot fungi secrete during lignin decay have been proposed as promising agents for oxidizing pollutants. We investigated the abilities of the white-rot fungi Punctularia strigosozonata, Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus to degrade Number 6 fuel oil in wood sawdust cultures. Our goals are to advise bioremediation efforts at a brownfield redevelopment site on the Blackstone River in Grafton, Massachusetts and to contribute to the understanding of decay mechanisms in white-rot fungi. All species tested degraded a C10 alkane. When cultivated for 6 months, Irpex lacteus, T. biforme, P. radiata, T. versicolor and P. ostreatus also degraded a C14 alkane and the polycyclic aromatic hydrocarbon phenanthrene. Gene expression analyses of P. strigosozonata indicate differential gene expression in the presence of Number 6 oil and on pine and aspen sawdust.
Resumo:
Lightmicroscopical (LM) and electron microscopi cal (EM) techniques, have had a major influence on the development and direction of cell biology, and particularly also on the investigation of complex host-parasite relationships. Earlier, microscopy has been rather descriptive, but new technical and scientific advances have changed the situation. Microscopy has now become analytical, quantitative and three-dimensional, with greater emphasis on analysis of live cells with fluorescent markers. The new or improved techniques that have become available include immunocytochemistry using immunogold labeling techniques or fluorescent probes, cryopreservation and cryosectioning, in situ hybridization, fluorescent reporters for subcellular localization, micro-analytical methods for elemental distribution, confocal laser scanning microscopy, scanning tunneling microscopy and live-imaging. Taken together, these tools are providing both researchers and students with a novel and multidimensional view of the intricate biological processes during parasite development in the host.
Resumo:
Companion animals are increasingly brought along by their owners to foreign countries. Thus, small animal travel medicine is becoming more important. The field includes both prophylaxis and metaphylaxis against various infectious diseases, as well as their diagnosis and treatment. Dogs returning from Southern Europe, but also from more tropical regions, may be infected with exotic pathogens. In addition, imported pedigree or working dogs, and especially stray dogs imported through welfare organisations, are at high risk.The present overview summarises the clinical and practical aspects of exotic parasitic diseases that may affect such dogs, and the risk of such diseases becoming autochthonously transmitted in Switzerland. Furthermore, the zoonotic potential of these infections will be considered.
Resumo:
Nitazoxanide (NTZ) and several NTZ-derivatives (thiazolides) have been shown to exhibit considerable anti-Neospora caninum tachyzoite activity in vitro. We coupled tizoxanide (TIZ), the deacetylated metabolite, to epoxy-agarose-resin and performed affinity chromatography with N. caninum tachyzoite extracts. Two main protein bands of 52 and 43kDa were isolated. The 52kDa protein was readily recognized by antibodies directed against NcPDI, and mass spectrometry confirmed its identity. Poly-histidine-tagged NcPDI-cDNA was expressed in Escherichia coli and recombinant NcPDI (recNcPDI) was purified by Co2+-affinity chromatography. By applying an enzyme assay based on the measurement of insulin crosslinking activity, recNcPDI exhibited properties reminiscent for PDIs, and its activity was impaired upon the addition of classical PDI inhibitors such as bacitracin (1-2mM), para-chloromercuribenzoic acid (0.1-1mM) and tocinoic acid (0.1-1mM). RecNcPDI-mediated insulin crosslinking was inhibited by NTZ (5-100 microM) in a dose-dependent manner. In addition, the enzymatic activity of recNcPDI was inhibited by those thiazolides that also affected parasite proliferation. Thus, thiazolides readily interfere with NcPDI, and possibly also with PDIs from other microorganisms susceptible to thiazolides.
Resumo:
Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.
Resumo:
The nutrient uptake response of ectomycorrhizal fungi (ECM) to different nutrient substrates is a driving force in ecosystem nutrient cycling. We hypothesized that taxa from low nitrogen (N) soils would be more likely to use organic N compared to taxa from high N soils, and that taxa from high N would be more likely to use organic phosphorus (P) sources when compared to the ECM dominant in low N soils. This study focuses on the growth response of ECM species collected over a N gradient to different forms of N and P nutrient substrates and whether ECM growth in a particular nutrient source can be related to how the ECM fungi have responded to elevated N in the field. This study found a mixed ECM response to organic and inorganic N and P treatments. High affinity N taxa expected to respond positively to inorganic N produced the phosphatase enzyme to take up organic phosphorus, but not all low affinity N taxa expected to negatively respond to organic P produced the protease enzyme to take up organic N. Interspecific variability was displayed by some high and low affinity N taxa responded and ECM intraspecific variability in response to N and P treatments was also noted. Future analysis of may show more evident ECM response patterns to inorganic and organic forms of N and P.
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity
Resumo:
Background: The diversification of organisms with a parasitic lifestyle is often tightly linked to the evolution of their host associations. If a tight host association exists, closely related species tend to attack closely related hosts; host associations are less stable if associations are determined by more plastic traits like parasitoid searching and oviposition behaviour. The pupal-parasitoids of the genus Ichneumon attack a variety of macrolepidopteran hosts.They are either monophagous or polyphagous, and therefore offer a promissing system to investigate the evolution of host associations. Ichneumon was previously divided into two groups based on general body shape; however, a stout shape has been suggested as an adaptation to buried host pupation sites, and might thus not represent a reliable phylogenetic character. Results: We here reconstruct the first molecular phylogeny of the genus Ichneumon using two mitochondrial (CO1 and NADH1) and one nuclear marker (28S). The resulting phylogeny only supports monophyly of Ichneumon when Ichneumon lugens Gravenhorst, 1829 (formerly in Chasmias, stat. rev.) and Ichneumon deliratorius Linnaeus, 1758 (formerly Coelichneumon) are included. Neither parasitoid species that attack hosts belonging to one family nor those attacking butterflies (Rhopalocera) form monophyletic clades. Ancestral state reconstructions suggest multiple transitions between searching for hosts above versus below ground and between a stout versus elongated body shape. A model assuming correlated evolution between the two characters was preferred over independent evolution of host-searching niche and body shape. Conclusions: Host relations, both in terms of phylogeny and ecology, evolved at a high pace in the genus Ichneumon. Numerous switches between hosts of different lepidopteran families have occurred, a pattern that seems to be the rule among idiobiont parasitoids. A stout body and antennal shape in the parasitoid female is confirmed as an ecological adaptation to host pupation sites below ground and has evolved convergently several times. Morphological characters that might be involved in adaptation to hosts should be avoided as diagnostic characters for phylogeny and classification, as they can be expected to show high levels of homoplasy.