905 resultados para Parallel algorithm
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Parallel-connected photovoltaic inverters are required in large solar plants where it is not economically or technically reasonable to use a single inverter. Currently, parallel inverters require individual isolating transformers to cut the path for the circulating current. In this doctoral dissertation, the problem is approached by attempting to minimize the generated circulating current. The circulating current is a function of the generated common-mode voltages of the parallel inverters and can be minimized by synchronizing the inverters. The synchronization has previously been achieved by a communication link. However, in photovoltaic systems the inverters may be located far apart from each other. Thus, a control free of communication is desired. It is shown in this doctoral dissertation that the circulating current can also be obtained by a common-mode voltage measurement. A control method based on a short-time switching frequency transition is developed and tested with an actual photovoltaic environment of two parallel inverters connected to two 5 kW solar arrays. Controls based on the measurement of the circulating current and the common-mode voltage are generated and tested. A communication-free method of controlling the circulating current between parallelconnected inverters is developed and verified.
Resumo:
We have developed a software called pp-Blast that uses the publicly available Blast package and PVM (parallel virtual machine) to partition a multi-sequence query across a set of nodes with replicated or shared databases. Benchmark tests show that pp-Blast running in a cluster of 14 PCs outperformed conventional Blast running in large servers. In addition, using pp-Blast and the cluster we were able to map all human cDNAs onto the draft of the human genome in less than 6 days. We propose here that the cost/benefit ratio of pp-Blast makes it appropriate for large-scale sequence analysis. The source code and configuration files for pp-Blast are available at http://www.ludwig.org.br/biocomp/tools/pp-blast.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.
Resumo:
Myocardial ischemia, as well as the induction agents used in anesthesia, may cause corrected QT interval (QTc) prolongation. The objective of this randomized, double-blind trial was to determine the effects of high- vs conventional-dose bolus rocuronium on QTc duration and the incidence of dysrhythmias following anesthesia induction and intubation. Fifty patients about to undergo coronary artery surgery were randomly allocated to receive conventional-dose (0.6 mg/kg, group C, n=25) or high-dose (1.2 mg/kg, group H, n=25) rocuronium after induction with etomidate and fentanyl. QTc, heart rate, and mean arterial pressure were recorded before induction (T0), after induction (T1), after rocuronium (just before laryngoscopy; T2), 2 min after intubation (T3), and 5 min after intubation (T4). The occurrence of dysrhythmias was recorded. In both groups, QTc was significantly longer at T3 than at baseline [475 vs 429 ms in group C (P=0.001), and 459 vs 434 ms in group H (P=0.005)]. The incidence of dysrhythmias in group C (28%) and in group H (24%) was similar. The QTc after high-dose rocuronium was not significantly longer than after conventional-dose rocuronium in patients about to undergo coronary artery surgery who were induced with etomidate and fentanyl. In both groups, compared with baseline, QTc was most prolonged at 2 min after intubation, suggesting that QTc prolongation may be due to the nociceptive stimulus of intubation.
Resumo:
Neoadjuvant chemotherapy has practical and theoretical advantages over adjuvant chemotherapy strategy in breast cancer (BC) management. Moreover, metronomic delivery has a more favorable toxicity profile. The present study examined the feasibility of neoadjuvant metronomic chemotherapy in two cohorts [HER2+ (TraQme) and HER2− (TAME)] of locally advanced BC. Twenty patients were prospectively enrolled (TraQme, n=9; TAME, n=11). Both cohorts received weekly paclitaxel at 100 mg/m2 during 8 weeks followed by weekly doxorubicin at 24 mg/m2 for 9 weeks in combination with oral cyclophosphamide at 100 mg/day (fixed dose). The HER2+ cohort received weekly trastuzumab. The study was interrupted because of safety issues. Thirty-six percent of patients in the TAME cohort and all patients from the TraQme cohort had stage III BC. Of note, 33% from the TraQme cohort and 66% from the TAME cohort displayed hormone receptor positivity in tumor tissue. The pathological complete response rates were 55% and 18% among patients enrolled in the TraQme and TAME cohorts, respectively. Patients in the TraQme cohort had more advanced BC stages at diagnosis, higher-grade pathological classification, and more tumors lacking hormone receptor expression, compared to the TAME cohort. The toxicity profile was also different. Two patients in the TraQme cohort developed pneumonitis, and in the TAME cohort we observed more hematological toxicity and hand-foot syndrome. The neoadjuvant metronomic chemotherapy regimen evaluated in this trial was highly effective in achieving a tumor response, especially in the HER2+ cohort. Pneumonitis was a serious, unexpected adverse event observed in this group. Further larger and randomized trials are warranted to evaluate the association between metronomic chemotherapy and trastuzumab treatment.
Resumo:
The whole research of the current Master Thesis project is related to Big Data transfer over Parallel Data Link and my main objective is to assist the Saint-Petersburg National Research University ITMO research team to accomplish this project and apply Green IT methods for the data transfer system. The goal of the team is to transfer Big Data by using parallel data links with SDN Openflow approach. My task as a team member was to compare existing data transfer applications in case to verify which results the highest data transfer speed in which occasions and explain the reasons. In the context of this thesis work a comparison between 5 different utilities was done, which including Fast Data Transfer (FDT), BBCP, BBFTP, GridFTP, and FTS3. A number of scripts where developed which consist of creating random binary data to be incompressible to have fair comparison between utilities, execute the Utilities with specified parameters, create log files, results, system parameters, and plot graphs to compare the results. Transferring such an enormous variety of data can take a long time, and hence, the necessity appears to reduce the energy consumption to make them greener. In the context of Green IT approach, our team used Cloud Computing infrastructure called OpenStack. It’s more efficient to allocated specific amount of hardware resources to test different scenarios rather than using the whole resources from our testbed. Testing our implementation with OpenStack infrastructure results that the virtual channel does not consist of any traffic and we can achieve the highest possible throughput. After receiving the final results we are in place to identify which utilities produce faster data transfer in different scenarios with specific TCP parameters and we can use them in real network data links.
Resumo:
Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.
Resumo:
Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.
Resumo:
The increasing performance of computers has made it possible to solve algorithmically problems for which manual and possibly inaccurate methods have been previously used. Nevertheless, one must still pay attention to the performance of an algorithm if huge datasets are used or if the problem iscomputationally difficult. Two geographic problems are studied in the articles included in this thesis. In the first problem the goal is to determine distances from points, called study points, to shorelines in predefined directions. Together with other in-formation, mainly related to wind, these distances can be used to estimate wave exposure at different areas. In the second problem the input consists of a set of sites where water quality observations have been made and of the results of the measurements at the different sites. The goal is to select a subset of the observational sites in such a manner that water quality is still measured in a sufficient accuracy when monitoring at the other sites is stopped to reduce economic cost. Most of the thesis concentrates on the first problem, known as the fetch length problem. The main challenge is that the two-dimensional map is represented as a set of polygons with millions of vertices in total and the distances may also be computed for millions of study points in several directions. Efficient algorithms are developed for the problem, one of them approximate and the others exact except for rounding errors. The solutions also differ in that three of them are targeted for serial operation or for a small number of CPU cores whereas one, together with its further developments, is suitable also for parallel machines such as GPUs.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.