555 resultados para PROCHLOROCOCCUS
Resumo:
Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.
Resumo:
Surface pigment data from a transect along the eastern boundary of the Atlantic Ocean was analysed using CHEMTAX to yield more detailed information on the composition of phytoplankton communities. Total chlorophyll a concentrations varied from 0.03 mg m(-3) in a northern oligotrophic region to 30.3 mg m(-3) in the Benguela ecosystem. Diatoms dominated the Benguela, while both diatoms and haptophytes were the major groups in the Canary ecosystem and the temperate NE Atlantic. Prochlorococcus was the most prominent group in the southern oligotrophic region (15.5 degrees S-15 degrees N) although haptophytes were also a significant component of the population. In contrast, haptophytes dominated the northern oligotrophic region (21 degrees-40 degrees N). Photo-pigment indices indicated that chlorophyll b was mainly associated with prasinophytes and chlorophyll c with diatoms. Elevated photosynthetic carotenoids were due to increased proportions of haptophytes, but also linked with diatoms and dinoflagellates. Photoprotective carotenoids were more prominently associated with Prochlorococcus and to a lesser extent to Synechococcus.
Resumo:
Surface pigment data from a transect along the eastern boundary of the Atlantic Ocean was analysed using CHEMTAX to yield more detailed information on the composition of phytoplankton communities. Total chlorophyll a concentrations varied from 0.03 mg m(-3) in a northern oligotrophic region to 30.3 mg m(-3) in the Benguela ecosystem. Diatoms dominated the Benguela, while both diatoms and haptophytes were the major groups in the Canary ecosystem and the temperate NE Atlantic. Prochlorococcus was the most prominent group in the southern oligotrophic region (15.5 degrees S-15 degrees N) although haptophytes were also a significant component of the population. In contrast, haptophytes dominated the northern oligotrophic region (21 degrees-40 degrees N). Photo-pigment indices indicated that chlorophyll b was mainly associated with prasinophytes and chlorophyll c with diatoms. Elevated photosynthetic carotenoids were due to increased proportions of haptophytes, but also linked with diatoms and dinoflagellates. Photoprotective carotenoids were more prominently associated with Prochlorococcus and to a lesser extent to Synechococcus.
Adaptive Mechanisms of an Estuarine Synechococcus based on Genomics, Transcriptomics, and Proteomics
Resumo:
Picocyanobacteria are important phytoplankton and primary producers in the ocean. Although extensive work has been conducted for picocyanobacteria (i.e. Synechococcus and Prochlorococcus) in coastal and oceanic waters, little is known about those found in estuaries like the Chesapeake Bay. Synechococcus CB0101, an estuarine isolate, is more tolerant to shifts in temperature, salinity, and metal toxicity than coastal and oceanic Synechococcus strains, WH7803 and WH7805. Further, CB0101 has a greater sensitivity to high light intensity, likely due to its adaptation to low light environments. A complete and annotated genome sequence of CB0101 was completed to explore its genetic capacity and to serve as a basis for further molecular analysis. Comparative genomics between CB0101, WH7803, and WH7805 show that CB0101 contains more genes involved in regulation, sensing, and stress response. At the transcript and protein level, CB0101 regulates its metabolic pathways, transport systems, and sensing mechanisms when nitrate and phosphate are limited. Zinc toxicity led to oxidative stress and a global down regulation of photosystems and the translation machinery. From the stress response studies seven chromosomal toxin-antitoxin (TA) genes, were identified in CB0101, which led to the discovery of TA genes in several marine Synechococcus strains. The activation of the relB2/relE1 TA system allows CB0101 to arrest its growth under stressful conditions, but the growth arrest is reversible, once the stressful environment dissipates. The genome of CB0101 contains a relatively large number of genomic island (GI) genes compared to known marine Synechococcus genomes. Interestingly, a massive shutdown (255 out of 343) of GI genes occurred after CB0101 was infected by a lytic phage. On the other hand, phage-encoded host-like proteins (hli, psbA, ThyX) were highly expressed upon phage infection. This research provides new evidence that estuarine Synechococcus like CB0101 have inherited unique genetic machinery, which allows them to be versatile in the estuarine environment.