973 resultados para PRESENTING CLINICAL-FEATURE
Resumo:
The majority of severe epileptic encephalopathies of early childhood are symptomatic where a clear etiology is apparent. There is a small subgroup, however, where no etiology is found on imaging and metabolic studies, and genetic factors are important. Myoclonic-astatic epilepsy (MAE) and severe myoclonic epilepsy in infancy (SMEI), also known as Dravet syndrome, are epileptic encephalopathies where multiple seizure types begin in the first few years of life associated with developmental slowing. Clinical and molecular genetic studies of the families of probands with MAE and SMEI suggest a genetic basis. MAE was originally identified as part of the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS(+)). Recent clinical genetic studies suggest that SMEI forms the most severe end of the spectrum of the GEFS(+). GEF(+) has now been associated with molecular defects in three sodium channel subunit genes and a GABA subunit gene. Molecular defects of these genes have been identified in patients with MAE and SMEI. Interestingly, the molecular defects in MAE have been found in the setting of large GEFS(+) pedigrees, whereas, more severe truncation mutations arising de novo have been identified in patients with SMEI. It is likely that future molecular studies will shed light on the interaction of a number of genes, possibly related to the same or different ion channels, which result in a severe phenotype such as MAE and SMEI. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.
Resumo:
Dysgraphia (agraphia) is a common feature of posterior cortical atrophy (PCA). However, detailed analyses of these spelling and writing impairments are infrequently conducted. LM is a 59-year-old woman with dysgraphia associated with PCA. She presented with a two-year history of decline in her writing and dressmaking skills. A 3D T-1-weighted MRI scan confirmed selective bi-parietal atrophy, with relative sparing of the hippocampi and other cortical regions. Analyses of LM's preserved and impaired spelling abilities indicated mild physical letter distortions and a significant spelling deficit characterised by letter substitutions, insertions, omissions, and transpositions that was systematically sensitive to word length while insensitive to real word versus nonword category, word frequency, regularity, imagery, grammatical class and ambiguity. Our findings suggest a primary graphemic buffer disorder underlies LM's spelling errors, possibly originating from disruption to the operation of a fronto-parietal network implicated in verbal working memory.
Resumo:
Estimating energy requirements is necessary in clinical practice when indirect calorimetry is impractical. This paper systematically reviews current methods for estimating energy requirements. Conclusions include: there is discrepancy between the characteristics of populations upon which predictive equations are based and current populations; tools are not well understood, and patient care can be compromised by inappropriate application of the tools. Data comparing tools and methods are presented and issues for practitioners are discussed. (C) 2003 International Life Sciences Institute.
Resumo:
The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.