864 resultados para POLYMER-MATRIX COMPOSITES (PMCS)
Resumo:
Fulgides and fulgimides are important organic photochromic compounds and can switch between the open forms and the closed forms with light. The 3-indolylfulgides and 3-indolylfulgimides exhibit promising photochromic properties and have great potential in optical memory devices, optical switches and biosensors. Copolymers containing 3-indolylfulgides/indolylfulgimides synthesized via free radical polymerizations increase conformation changes and allow the photochromic compounds to be uniformly distributed in the polymer matrix. A trifluoromethyl 3-indolylfulgide and two trifluoromethyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization with methyl methacrylate provided two linear copolymers or a cross-linked copolymer. The properties of the monomeric fulgide/fulgimides and copolymers in toluene or as thin films were characterized. In general, the photochromic monomers and copolymers revealed similar photochromic properties and exhibited good thermal and photochemical stability. All compounds absorb visible light in both open forms and closed forms. The closed form copolymers were more stable than the open form copolymers and showed little or no degradation after 400 h. The photochemical degradation rate was less than 0.03% per cycle. In films, conformational restrictions were observed for the open forms suggesting that the preparation of films from the closed forms is advantageous. Two novel methyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization of acrylamide with the methyl indolylfulgimides or the trifluoromethyl indolylfulgimides yielded two aqueous soluble linear copolymers and two photochromic hydrogels. The closed form copolymers containing trifluoromethyl indolylfulgimides were hydrolyzed in aqueous solution by replacing the trifluoromethyl group with a carboxylic acid group. The resulting carboxylic copolymers were also photochromic. The copolymers containing methyl fulgimides were stable in aqueous solutions and did not hydrolyze. Both methyl and carboxylic copolymers exhibited good stability in aqueous solutions. In general, the open form copolymers were more stable than the closed form copolymers, and the copolymers revealed better stability in acidic solution than neutral solution. The linear copolymers displayed better photochemical stability in neutral solution and degraded up to 22% after 105 cycles. In contrast, the hydrogels showed enhanced fatigue resistance in acidic condition and underwent up to 60 cycles before degrading 24%.
Resumo:
Environmental inputs can improve the level of innovation by interconnecting them with traditional inputs regarding the properties of materials and processes as a strategic eco-design procedure. Advanced engineered polymer composites are needed to meet the diverse needs of users for high-performance automotive, construction and commodity products that simultaneously maximize the sustainability of forest resources. In the current work, wood polymer composites (WPC) are studied to promote long-term resource sustainability and to decrease environmental impacts relative to those of existing products. A series of polypropylene wood–fiber composite materials having 20, 30, 40 and 50 wt. % of wood–fibers were prepared using twin-screw extruder and injection molding machine. Tensile and flexural properties of the composites were determined. Polypropylene (PP) as a matrix used in this study is a thermoplastic material, which is recyclable. Suitability of the prepared composites as a sustainable product is discussed.
Resumo:
With the emergence of scientific interest in graphene oxide (GO) in recent times, researchers have endeavored to incorporate GO in thermoset polymeric matrix to develop composites with extraordinary set of properties. The current state of research in graphene/thermoset polymer composites is highlighted here with a focus on the role of interface in dictating the overall properties of the composites. Different strategies like covalent and non-covalent functionalization of GO have been discussed with respect to improvement in mechanical, electrical, thermal and rheological properties. In addition, future prospects have been outlined. By assessing the current state of research in graphene/thermoset composites, it is obvious that graphene derivatives are promising materials in enhancing the structural properties of the nanocomposites at extremely low levels of filler loading. This opens new avenues in designing lightweight composites for myriad applications and by tailoring the interfacial adhesion with the polymer, ordered structure can be achieved at macroscopic processing scales. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
The use of composite materials has increased in the recent decades, mainly in the aeronautics and automotives industries. In the present study is elaborated a computational simulation program of the bending test using the finite elements method, in the commercial software ANSYS. This simulation has the objective of analyze the mechanical behavior in bending of two composites with polymeric matrix reinforced with carbon fibers. Also are realized bending tests of the 3 points to obtain the resistances of the materials. Data from simulation and tests are used to make a comparison between two failures criteria, Tsai-Wu and Hashin criterion. Copyright © 2009 SAE International.
Resumo:
This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.
Resumo:
A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.
Resumo:
In this study, atmospheric-pressure plasmas were applied to modify the surface of silane-coated silica nanoparticles. Subsequently nanocomposites were synthesized by incorporating plasma-treated nanoparticles into an epoxy resin matrix. Electrical testing showed that such novel dielectric materials obtained high partial discharge resistance, high dielectric breakdown strength, and enhanced endurance under highly stressed electric field. Through spectroscopic and microscopic analysis, we found surface groups of nanoparticles were activated and radicals were created after the plasma treatment. Moreover, a uniform dispersion of nanoparticles in nanocomposites was observed. It was expected that the improved dielectric performance of the nanocomposites can attribute to stronger chemical bonds formed between surface groups of plasma-treated nanoparticles and molecules in the matrix. This simple yet effective and environmentally friendly approach aims to synthesize the next generation of high-performance nanocomposite dielectric insulation materials for applications in high-voltage power systems.