925 resultados para PMU,IEEE network,OPAL-RT,Real-Time monitoring,Digital Twin,Synchrophasors
Resumo:
Chlamydia psittaci and Chlamydia abortus are closely related intracellular bacteria exhibiting different tissue tropism that may cause severe but distinct infection in humans. C. psittaci causes psittacosis, a respiratory zoonotic infection transmitted by birds. C. abortus is an abortigenic agent in small ruminants, which can also colonize the human placenta and lead to foetal death and miscarriage. Infections caused by C. psittaci and C. abortus are underestimated mainly due to diagnosis difficulties resulting from their strict intracellular growth. We developed a duplex real-time PCR to detect and distinguish these two bacteria in clinical samples. The first PCR (PCR1) targeted a sequence of the 16S-23S rRNA operon allowing the detection of both C. psittaci and C. abortus. The second PCR (PCR2) targeted the coding DNA sequence CPSIT_0607 unique to C. psittaci. The two PCRs showed 100 % detection for ≥ 10 DNA copies per reaction (1000 copies ml- 1). Using a set of 120 samples, including bacterial reference strains, clinical specimens and infected cell culture material, we monitored 100 % sensitivity and 100 % specificity for the detection of C. psittaci and C. abortus for PCR1. When PCR1 was positive, PCR2 could discriminate C. psittaci from C. abortus with a positive predictive value of 100 % and a negative predictive value of 88 %. In conclusion, this new duplex PCR represents a low-cost and time-saving method with high-throughput potential, expected to improve the routine diagnosis of psittacosis and pregnancy complication in large-scale screening programs and also during outbreaks.
Resumo:
A capillary microtrap thermal desorption module is developed for near real-time analysis of volatile organic compounds (VOCs) at sub-ppbv levels in air samples. The device allows the direct injection of the thermally desorbed VOCs into a chromatographic column. It does not use a second cryotrap to focalize the adsorbed compounds before entering the separation column so reducing the formation of artifacts. The connection of the microtrap to a GC–MS allows the quantitative determination of VOCs in less than 40 min with detection limits of between 5 and 10 pptv (25 °C and 760 mmHg), which correspond to 19–43 ng m−3, using sampling volumes of 775 cm3. The microtrap is applied to the analysis of environmental air contamination in different laboratories of our faculty. The results obtained indicate that most volatile compounds are easily diffused through the air and that they also may contaminate the surrounding areas when the habitual safety precautions (e.g., working under fume hoods) are used during the manipulation of solvents. The application of the microtrap to the analysis of VOCs in breath samples suggest that 2,5-dimethylfuran may be a strong indicator of a person's smoking status
Resumo:
This thesis is done as a complementary part for the active magnet bearing (AMB) control software development project in Lappeenranta University of Technology. The main focus of the thesis is to examine an idea of a real-time operating system (RTOS) framework that operates in a dedicated digital signal processor (DSP) environment. General use real-time operating systems do not necessarily provide sufficient platform for periodic control algorithm utilisation. In addition, application program interfaces found in real-time operating systems are commonly non-existent or provided as chip-support libraries, thus hindering platform independent software development. Hence, two divergent real-time operating systems and additional periodic extension software with the framework design are examined to find solutions for the research problems. The research is discharged by; tracing the selected real-time operating system, formulating requirements for the system, and designing the real-time operating system framework (OSFW). The OSFW is formed by programming the framework and conjoining the outcome with the RTOS and the periodic extension. The system is tested and functionality of the software is evaluated in theoretical context of the Rate Monotonic Scheduling (RMS) theory. The performance of the OSFW and substance of the approach are discussed in contrast to the research theme. The findings of the thesis demonstrates that the forged real-time operating system framework is a viable groundwork solution for periodic control applications.
Resumo:
This thesis describes the process of the integration of a real-time simulator environment with a motion platform and a haptic device as a part of the Kvalive project. Several programs running on two computers were made to control the different devices of the environment. User tests were made to obtain information of needed improvements to make the simulator more realistic. Also new ideas for improving the simulator and directions of further research were obtained with the help of this research.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
A generalized off-shell unitarity relation for the two-body scattering T matrix in a many-body medium at finite temperature is derived, through a consistent real-time perturbation expansion by means of Feynman diagrams. We comment on perturbation schemes at finite temperature in connection with an erroneous formulation of the Dyson equation in a paper recently published.
Resumo:
The dynamics of porcine circovirus type 2 (PCV2) shedding in semen of naturally infected boars was studied. Semen was collected serially each 15 or 20 days during 62 days from 5 boars from a herd and from 11 boars from an artificial insemination center. All boars were positive for PCV2 DNA by nested polymerase chain reaction of raw semen in at least two sampling dates, and most of them had detectable shedding in all sampling dates. Real-time quantitative PCR was performed in 23 samples. All samples showed low amounts of PCV2 DNA, ranging from 98 to 652 PCV2 copies/mL. No differences between the frequencies of PCV2 DNA shed in semen were found considering herds and age of boars. PCV2 shedding in the semen can occur continuously or intermittently up to 60 days in naturally infected boars at 12 to 42 months old in absence of PCV2 clinical signs. These results demonstrate sporadic and long-term shedding patterns of low amounts of PCV2 DNA in semen from naturally infected boars.
Resumo:
When modeling machines in their natural working environment collisions become a very important feature in terms of simulation accuracy. By expanding the simulation to include the operation environment, the need for a general collision model that is able to handle a wide variety of cases has become central in the development of simulation environments. With the addition of the operating environment the challenges for the collision modeling method also change. More simultaneous contacts with more objects occur in more complicated situations. This means that the real-time requirement becomes more difficult to meet. Common problems in current collision modeling methods include for example dependency on the geometry shape or mesh density, calculation need increasing exponentially in respect to the number of contacts, the lack of a proper friction model and failures due to certain configurations like closed kinematic loops. All these problems mean that the current modeling methods will fail in certain situations. A method that would not fail in any situation is not very realistic but improvements can be made over the current methods.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
Group A Rotavirus (RVA) is one of the most common causes of diarrhea in humans and several animal species. A SYBR-Green Real-Time polymerase chain reaction (PCR) was developed to diagnose RVA from porcine fecal samples, targeting amplification of a 137-bp fragment of nonstructural protein 5 (NSP5) gene using mRNA of bovine NADH-desidrogenase-5 as exogenous internal control. Sixty-five samples were tested (25 tested positive for conventional PCR and genetic sequencing). The overall agreement (kappa) was 0.843, indicating 'very good' concordance between tests, presenting 100% of relative sensitivity (25+ Real Time PCR/25+ Conventional PCR) and 87.5% of relative sensitivity (35- Real Time PCR/40- Conventional PCR). The results also demonstrated high intra- and inter-assay reproducibility (coefficient of variation ≤1.42%); thus, this method proved to be a fast and sensitive approach for the diagnosis of RVA in pigs.
Resumo:
In this work, image based estimation methods, also known as direct methods, are studied which avoid feature extraction and matching completely. Cost functions use raw pixels as measurements and the goal is to produce precise 3D pose and structure estimates. The cost functions presented minimize the sensor error, because measurements are not transformed or modified. In photometric camera pose estimation, 3D rotation and translation parameters are estimated by minimizing a sequence of image based cost functions, which are non-linear due to perspective projection and lens distortion. In image based structure refinement, on the other hand, 3D structure is refined using a number of additional views and an image based cost metric. Image based estimation methods are particularly useful in conditions where the Lambertian assumption holds, and the 3D points have constant color despite viewing angle. The goal is to improve image based estimation methods, and to produce computationally efficient methods which can be accomodated into real-time applications. The developed image-based 3D pose and structure estimation methods are finally demonstrated in practise in indoor 3D reconstruction use, and in a live augmented reality application.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
Differentiation between stunned and infarcted myocardium in the setting of acute ischemia is challenging. Real time myocardial contrast echocardiography allows the simultaneous assessment of myocardial perfusion and function. In the present study we evaluated infarcted and stunned myocardium in an experimental model using real time myocardial contrast echocardiography. Sixteen dogs underwent 180 min of coronary occlusion followed by reperfusion (infarct model) and seven other dogs were submitted to 20 min of coronary occlusion followed by reperfusion (stunned model). Wall motion abnormality and perfusional myocardial defect areas were measured by planimetry. Risk and infarct areas were determined by tissue staining. In the infarct model, the wall motion abnormality area during coronary occlusion (5.52 ± 1.14 cm²) was larger than the perfusional myocardial defect area (3.71 ± 1.45 cm²; P < 0.001). Reperfusion resulted in maintenance of wall motion abnormality (5.45 ± 1.41 cm²; P = 0.43 versus occlusion) and reduction of perfusional myocardial defect (1.51 ± 1.29 cm²; P = 0.004 versus occlusion). Infarct size determined by contrast echocardiography correlated with tissue staining (r = 0.71; P = 0.002). In the stunned model, the wall motion abnormality area was 5.49 ± 0.68 cm² during occlusion and remained 5.1 ± 0.63 cm² after reperfusion (P = 0.07). Perfusional defect area was 2.43 ± 0.79 cm² during occlusion and was reduced to 0.2 ± 0.53 cm² after reperfusion (P = 0.04). 2,3,5-Triphenyl tetrazolium chloride staining confirmed the absence of necrotic myocardium in all dogs in the stunned model. Real time myocardial contrast echocardiography is a noninvasive technique capable of distinguishing between stunned and infarcted myocardium after acute ischemia.
Resumo:
Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.