984 resultados para PIM-SM
Resumo:
To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Superoxide dismutase has been discovered within the periplasm of several Gram-negative pathogens. We studied the Cu,Zn-SOD enzyme in Escherichia coli isolated from clinical samples (stool samples) collected from patients suffering from diarrhea. Antibiogram studies of the isolates were carried out to determine the sensitive and resistant strains. The metal co-factor present in the enzyme was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. A 519 bp sodC gene was amplified from resistant and sensitive strains of Escherichia coli. Cloning and sequencing of the sodC gene indicated variation in the protein and amino acid sequences of sensitive and resistant isolates. The presence of sodC in highly resistant Escherichia coli isolates from diarrheal patients indicates that sodC may play role in enhancing the pathogenicity by protecting cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. The presence of SodC could be one of the factors for bacterial virulence.
Resumo:
Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.
Resumo:
Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.
Resumo:
The gain and loss integrals in the Boltzmann equation for a rigid sphere gas are evaluated in closed form for a distribution which can be expressed as a linear combination of Maxwellians. Application to the Mott-Smith bimodal distribution shows that the gain is also bimodal, but the two modes in the gain are less pronounced than in the distribution. Implications of these results for simple collision models in non-equilibrium flow are discussed.
Resumo:
This paper examines the role of microstructure and matric suction in the collapse behavior of a compacted clay soil from Bangalore District in Karnataka State, India. The microstructure of the compacted specimens was examined by mercury intrusion porosimetry (MIP), and the ASTM Filter Paper Method was used to determine their matric suction. The microstructure and matric suction of the compacted specimens were changed by varying their compaction water content, dry density, and clay content (< 2 mum fraction). Experimental results showed that relative abundance of coarse (60 to 6 mum) pores was mainly affected by increasing the dry density of the specimens from 1.49 to 1.77 g/cm(3). The relative abundance of coarse and fine (0.01 to 0.002 mum) pores was affected by increasing the compaction water content from 10.6 to 26.4%. Variations in dry density, compaction water content, and clay contents notably affected the matric suction of the compacted specimens. The collapse behavior of the compacted specimens is explained from analysis of the MIP and matric suction results.
Resumo:
The enthalpy increments and the standard molar Gibbs energy (G) of formation of SmFeO3(S) and SM3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A X-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to673 K for SmFeO3(s) and at similar to560 K for Sm3Fe5O12(S). Enthalpy increment data for SmFeO3(s) and SM3Fe5O12(s), except in the vicinity of X-transition, can be represented by the following polynomial expressions:
{H-m(0)(T) - H-m(0)(298.15 K){/J mol-(1)(+/-1.2%) = -54 532.8 + 147.4 . (T/K) + 1.2 . 10(-4) . (T/K)(2) +3.154 . 10(6) . (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000)
for SmFeO3(s), and
{H-m(0)(T) - H-m(0)(298.15 K)}/J mol(-1) (+/-1.4%) = -192 763 + 554.7 . (T/K) + 2.0 . 10(-6) . (T/K)(2) + 8.161 . 10(6) - (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for Sm3Fe5O12(s).
The reversible emf of the solid-state electrochemical cells, (-)Pt/{SmFeO3(s) + Sm2O3(S) + Fe(s)) // YDT / CSZ // {Fe(s) + Fe0.95O(s)} / Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(S)} // CSZ // {SmFeO3(s) + Sm3Fe5O12(s) + Fe3O4(s) / Pt(+), were measured in the temperature ranges of 1005-1259 K and 1030-1252 K, respectively. The standard molar G of formation of solid SmFeO3 and Sm3Fe5O12 calculated by the least squares regression analysis of the data obtained in the current study, and data for Fe0.95O and Sm2O3 from the literature, are given by:
Delta(f)G(m)(0)(SmFeO3, s)/kj . mol(-1)(+/-2.0) = -1355.2 + 0.2643 .
Resumo:
We examine the shear-thinning behaviour of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs, showing coexistence of the fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile, which is linear at low shear rates, becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behaviour like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation.
Resumo:
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The present work combines two rapidly growing research areas-functional supramolecular gels and lanthanide based hybrid materials. Facile hydrogel formation from several lanthanide(III) cholates has been demonstrated. The morphological and mechanical properties of these cholate gels were investigated by TEM and rheology. The hydrogel matrix was subsequently utilized for the sensitization of Tb(III) by doping a non-coordinating chromophore, 2,3-dihydroxynaphthalene (DHN), at micromolar concentrations. In the mixed gels of Tb(III)-Eu(III), an energy transfer pathway was found to operate from Tb(III) to Eu(III) and by utilizing this energy transfer, tunable multiple-color luminescent hydrogels were obtained. The emissive properties of the hydrogels were also retained in the xerogels and their suspensions in n-hexane were used for making luminescent coating on glass surface.
Resumo:
Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find that the constraints obtained from the current data on $t \bar t$ production at the Tevatron are in the range of $\sim {\cal O}$ TeV and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses, the limits on the coloron mass may be different than those for the axigluon even for $\cot \xi = 1$. We also compute the expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against the SM as also the colorons. We further find that at the LHC, the signal should be visible in the $t \bar t$ invariant mass spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.
Resumo:
In this talk I discuss some aspects of the study of electric dipole moments (EDMs) of the fermions, in the context of R-parity violating (\rpv) Supersymmetry (SUSY). I will start with a brief general discussion of how dipole moments, in general, serve as a probe of physics beyond the Standard Model (SM) and an even briefer summary of \rpv SUSY. I will follow by discussing a general method of analysis for obtaining the leading fermion mass dependence of the dipole moments and present its application to \rpv SUSY case. Then I will summarise the constraints that the analysis of $e,n$ and $Hg$ EDMs provide for the case of trilinear \rpv SUSY couplings and make a few comments on the case of bilinear \rpv, where the general method of analysis proposed by us does not work.
Resumo:
In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.