908 resultados para PHASE-SEPARATION BEHAVIOR
Resumo:
The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.
Resumo:
In this Rapid Communication we demonstrate the applicability of an augmented Gibbs ensemble Monte Carlo approach for the phase behavior determination of model colloidal systems with short-ranged depletion attraction and long-ranged repulsion. This technique allows for a quantitative determination of the phase boundaries and ground states in such systems. We demonstrate that gelation may occur in systems of this type as the result of arrested microphase separation, even when the equilibrium state of the system is characterized by compact microphase structures.
Resumo:
A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Resumo:
The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (N-C) -> isotropic (I) -> nematic of disklike micelles (N-D) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (l') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N-C to N-D on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N-C and N-D nematic phases in step shear experiments, they were characterized to be tumbling and now aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.
Resumo:
Abstract is not available.
Resumo:
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.
Resumo:
Tlie sclxuntion and clraractcrization of vitamins Al and An nnd related compoundsby reversed-pllasc paper cliromatogrnpl~y as well as ly thin-lqxr chromategraphy have hen rcportccl carlicrl * $. Thin-lnycr chromatography has also been used for the separatinn and charncterizatio11 of carotenoids from natural sourccs3~ ‘1. I-Iowcver, 130tr.rc,1~1~ofib scrvccl that carotenoid misturcs cannot be separated on a sin& aclsorhnt with ;1 sin& solvent. The scparntion and clctermi1wtion of carotenoid alclclydes from plants, microorganisms and animnl tissues have lxxn carriecl out by nicans of thin-layer clirf.~li~ato~apI~~U. Apocarotcnals awl apocarotcnoic acid have been detected in ornnges by the same technique’*
Resumo:
This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.
Resumo:
A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).
Resumo:
Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.
Resumo:
The reentrant low temperature phase of the perovskite manganite LaMnO3+delta (delta=0.22) has been investigated with ac susceptibility and dc magnetization studies. A critical examination of the memory effects in ac susceptibility leads us to the conclusion that the slow dynamics in the system is a consequence of collective relaxation processes resulting from interactions between ferromagnetic clusters, whose presence was indicated in earlier studies. Here, we postulate that the collective behavior is due to the existence of long-range (dipolar) interactions between the large ferromagnetic `superspins'. This is also confirmed by an abnormally large microscopic spin-flip time (similar to 10(-9) s) compared to a canonical spin glass. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.