988 resultados para PARASITES
Resumo:
The genus Schistosoma is composed of blood flukes that infect vertebrates, from which three species are major causative agents of human schistosomiasis, a tropical disease that affects more than 200 million people. Current models of the recent evolution of Schistosoma indicate multiple events of migration and speciation from an Asian ancestral species. Transposable elements are important drivers of genome evolution and have been hypothesised to have an important role in speciation. In this work, we describe a comprehensive inventory of Schistosoma mansoni and Schistosoma japonicum retrotransposons, based on their recently published genomic data. We find a considerable difference in retrotransposon representation between the two species (22% and 13%, respectively). A large part of this difference can be attributed to higher representation of two previously described families of S. mansoni retrotransposons (SR2 and Perere-3/SR3), compared with the representation of their closest relative families in S. japonicum. A more detailed analysis suggests that these two S. mansoni families were the subject of recent bursts of transposition that were not paralleled by their S. japonicum counterparts. We hypothesise that these bursts could be a consequence of the evolutionary pressure resulting from migration of Schistosoma from Asia to Africa and their establishment in this new environment, helping both speciation and adaptation. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Serum samples from 1028 sheep were collected from 32 herds within Federal District, in the central region of Brazil. The samples were examined by indirect fluorescent antibody test (IFAT) using sera diluted 1:64 and 1:50 as cut-off values for the detection of antibodies against Toxoplasma gondii and Neospora caninum, respectively. The observed prevalence for T. gondii infection was 38.22% (26.81%< CI 0.95 < 49.62%), and the titers ranged from 64 to 65536. The observed prevalence for N. caninum infection was 8.81% (7.08%< CI 0.95 < 10.53%). The titers ranged from 50 to 51200. The reactant sera to both pathogens corresponded to 4.67% of the samples. The risk factors were not determined because of the absence of negative herds for T. gondii and the high proportion of positive herds for N. caninum (87.50%). The prevalence for T. gondii infection was significantly higher among males than in females. The present work is the first report on seroprevalence of T. gondii and N. caninum in sheep from Federal District and shows that infection by both parasites is widespread in the ovine population from this region.
Resumo:
Organisms of the genera Toxoplasma, Hammondia and Neospora, the Hammondia-like organisms, are closely related coccidian with similarly sized oocysts. Therefore, a diagnosis based on microscopy of oocysts in feces is not a method of choice for species identification of these important parasites. In this paper, we present a polymerase chain reaction coupled with restriction fragment length polymorphism (PCR-RFLP) method to differentially diagnose oocysts of Toxoplasma gondii from oocyst of Hammondia hammondi. Another PCR-RFLP was designed to differentiate oocysts of Hammondia heydorni from oocysts of Neospora spp. Both PCR-RFLP are based on nucleotide sequences of the Hsp70 coding gene. In conclusion, we presented two alternative molecular diagnostic assays that can be successfully applied for the differentiation of oocysts of Hammondia-like organisms shed by felids and canids.
Resumo:
Carios mimon is an argasid tick common on Chiroptera, originally described from larvae collected on bats Mimon crenulatum from Bolivia and Eptesicus brasiliensis from Uruguay. Later it was also registered from Argentina and recently included among the Brazilian tick fauna. In Brazil, this species is very aggressive to man, resulting in intense inflammatory response and pain. It is known only by the larval description and its morphology resembles that from other species currently included into the genus Carios, formerly classified into the subgenus Alectorobius, genus Ornithodoros. Here we describe adults and redescribe the larva of C. mimon, based on light and scanning electron microscopy. Remarks about its morphological similarity with other species of this genus are also discussed. Molecular analysis inferred from a portion of the 16S rRNA mitochondrial gene placed C. mimon in a cluster supported by maximal bootstrap value (100%) with other argasid species (mostly bat parasites in the New World), which have been classified into either the genus Ornithodoros or Carios, depending on the Argasidae classification adopted by different authors.
Resumo:
Ticks are hematophagous parasites of people and animals and are a public health hazard in several countries. They are vectors of infectious diseases; in addition, the bite of some ticks, mainly from the Ornithodoros genus, may lead to local lesions and systemic illness, referred to as tick toxicosis. In this report, we describe a dog bitten by Ornithodoros brasiliensis, popularly known as the mouro tick. The main clinical findings were disseminated skin rash, pruritus, mucosal hyperemia, lethargy, and fever. Laboratory abnormalities 48 hours after the bites occurred included mild nonregenerative anemia, eosinophilia, basophilia, increased serum creatine kinase activity, increased serum C-reactive protein concentration, and prolonged coagulation times. Tick-borne pathogens were not detected by PCR analysis or serologic testing, supporting the diagnosis of a noninfectious syndrome due to tick bite, compatible with tick toxicosis.
Resumo:
A cross-sectional study was conducted to determine the occurrence of anti-Toxoplasma gondii, anti-Neospora caninum, and anti- Leishmania chagasi antibodies in dogs of the state of Para, Brazil. For this purpose, 129 blood samples were collected from dogs of different ages and gender. Samples of 72 dogs were collected from 39 rural properties from 19 municipalities, and 57 samples were from stray dogs, collected after captivity by the Center of Zoonosis Control from the municipality of Santar,m. The sera were analyzed for anti-T. gondii and anti-N. caninum antibodies by indirect fluorescent antibody tests with cutoff values of 1:16 and 1:50, respectively. For the presence of L. chagasi antibodies, enzyme-linked immunosorbent assay was used and positive results were confirmed by immunochromatographic method using the recombinant antigen K39. Of the total of 129 dogs, 90 (69.8%) were positive for T. gondii, 16 (12.4%) for N. caninum, and 30 (23.3%) for L. chagasi. Antibodies for all three parasites were found simultaneously in seven dogs (5.4%), mostly in urban dogs (six of seven). No association was observed related to gender and location (urban or rural) of dogs and occurrence of N. caninum and T. gondii antibodies although, regarding L. chagasi, higher prevalence was found in females (P < 0.02) and in dogs from urban location (P < 0.001). From the 39 farms, in 30 (76.9%) at least one dog was positive for T. gondii or N. caninum or both. Higher occurrence of Leishmania antibodies was observed in N. caninum-negative dogs (P < 0.05).
Resumo:
Recently we conducted the molecular characterization of Rangelia vitalii, a protozoan with high pathogenicity for young dogs in southern Brazil. To date, the descriptions of the disease have been restricted to natural infection cases. Therefore, this study aimed to evaluate the parasitemia, biological cycles and clinical-pathological findings in dogs experimentally infected with R. vitalii in the acute phase of disease, and also aimed to test a therapeutic protocol based on the diminazene aceturate. For this study, we used 12 young dogs (females), separated into two groups. Group A was composed of healthy dogs, not-infected (n = 5), and Group B consisted of animals infected with R. vitalii (n = 7). After infection, the animals were monitored by blood smear examinations, which showed intra-erythrocytic forms of the parasite 5 days post-infection (PI). Parasitemia increased progressively in these animals and had the highest peak of circulating parasites between 9 and 11 days PI. Subsequently, the parasitemia reduced and the protozoan was seen inside the leukocytes in days 17, 19 and 21 PI. The most prominent clinical signs observed at the 20 day PI of experiment were lethargy, fever and anorexia. We observed a decrease of hematocrit of infected animals compared with not-infected dogs, featuring a moderate anemia. Pathological evaluation of one dog in Group B at day 21 PI revealed splenomegaly, hepatomegaly, lymphadenopathy, and hemorrhages at necropsy. Histological examination showed only follicular hyperplasia in the spleen and lymph nodes, and the etiologic agent in the vascular endothelium. At 21 days PI, it was performed the treatment of dogs in Group B (n = 6) with a single dose of diminazene aceturate, which showed a curative efficacy of 100% in cleaning R. vitalii from blood of infected dogs. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
From May 1997 to October 2000, 49 Sotalia guianensis (tucuxi dolphin) incidentally caught in fishing nets or stranded in Sao Paulo (SP) and Parana (PH) states in Brazil were necropsied. In total, 17 lungs, 35 stomachs, and 30 intestines were analyzed. Contents were washed through a sieve (mesh, 150 mm) and examined under a stereoscopic microscope for parasites. Histopathologic analyses were performed in the lungs of five infected dolphins. The nematode Halocereus brasiliensis was found in 88% of all lungs examined, inducing moderate-to-severe pneumonia. Braunina cordiformis, Anisakis sp., and acanthocephalans were found in the stomachs. The trematode Synthesium tursionis was the only parasite found in the intestines, and it was identified in 73% of the animals necropsied. No macroscopic lesions were seen due to parasites in the stomachs and intestines analyzed.
Resumo:
In wild and domestic birds, cryptosporidiosis is often associated with infections by Cryptosporidium galli, Cryptosporidium baileyi and Cryptosporidium meleagridis. In addition to these species, a number of avian Cryptosporidium species yet to be fully characterized are commonly found among exotic and wild avian isolates. The present study aimed to detect and identify samples of Cryptosporidium spp. from free-living wild birds, in order to contribute to the knowledge of the variability of this parasite in the free-living population of Brazil. Stool samples were collected from 242 birds, with the following proportions of individuals: 50 Emberizidae (20.7%), 112 Psittacidae (46.3%), 44 Cardinalidae (18.2%), 12 Turdidae (5.0%), eight Ramphastidae (3.3%), seven Icteridae (2.9%), three Estrilididae (1.2%), two Contigidae (0.8%), two Thraupidae (0.8%) and two Fringilidae (0.8%). Among the 242 fecal samples from wild birds, 16(6.6%) were positive for the presence of oocysts of Cryptosporidium. Molecular characterization of the 16 samples of Cryptosporidium, were performed with phylogenetic reconstructions employing 292 positions of 18S rDNA. None of the samples of birds was characterized as C meleagridis. C gall was identified in one rufous-bellied thrush (Turdus rufiventris), five green-winged saltators (Saltator similis), one slate-coloured seedeater (Sporophila schistacea), one goldfinch (Carduelis carduelis) and three saffron finches (Sicalis flaveola). One goldfinch isolate, one buff-fronted seedeater (Sporophila frontalis), one red-cowled cardinal (Paroaria dominicana) and one other saffron finch (S. flaveola) were identified as C. baileyi. Avian genotype II was found in an isolate from a white-eyed parakeet (Aratinga leucophthalma). Clinical symptoms of cryptosporidiosis in birds have already been described and the number of wild birds which were shedding parasites was high. Therefore, further epidemiological research and disease surveillance of birds in the wild is warranted. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Toxoplasma gondu affects mainly warm-blooded animals including birds Even though previous experimental data indicate that raptors are resistant to clinical infection there is no information regarding the susceptibility of Brazilian birds of prey to T gondii The present study aimed to observe how the crested caracara a common raptor in Brazil Interacts with T gondu, using an experimental model Seven crested caracaras seronegative for T gondu were separated into infected (n = 5) and control groups (n = 2) Birds from the infected group were fed T gondu-Infected Calomys callosus a rodent present in Brazilian savanna and described as highly susceptible to infection by the parasite for three consecutive days while control animals were fed non-Infected rodents All Infected birds produced T gondu-specific IgG antibodies that were firstly detected at day 7 post-Infection with peak production detected between 15 and 30 dpi No significant alterations in clinical and hematological parameters were observed throughout the experimental period and parasites were sparsely found in muscular tissues after the birds were euthanized In conclusion our results demonstrated that crested caracaras are resistant to oral infection with T gondu suggesting that the host-parasite relationship between both species has reached a remarkable equilibrium (C) 2010 Elsevier B V All rights reserved
Resumo:
Due to the scarcity of information related to the epidemiology of Cryptosporidium infection in passerine birds, this study aimed to determine the periodicity of fecal shedding of Cryptosporidium spp. oocysts, after natural infection, and its clinical signs, mortality, and molecular characterization. Four hundred eighty fecal samples were collected from 40 birds, including 372 samples from 31 adult birds and 108 samples from nine young birds (up to 12 months old), housed in five aviaries, monthly from September 2007 to September 2008, with the exception of April. The birds originated from aviaries in which the following species were raised: great-billed seed-finch (Oryzoborus maximiliani), lesser seed-finch (Oryzoborus angolensis), ultramarine grosbeak (Cyanocompsa brissonii), and rusty-collared seedeater (Sporophila collaris). The samples were preserved in 2.5% potassium dichromate at 4A degrees C until processing. The oocysts were purified by centrifugal flotation in Sheather`s solution, followed by genomic DNA extraction and molecular characterization of oocysts using the nested polymerase chain reaction for amplification of fragments of the 18S subunit of rRNA gene. Intermittent shedding of oocysts was observed by positive amplification for Cryptosporidium spp. in 91 (24.5%) samples of adult birds and 14 (13%) of young birds. The sequencing of the amplified fragments enabled the identification of Cryptosporidium galli. Although all the aviaries had birds positive for C. galli, morbidity or mortality was observed in only one aviary and was associated with concomitant infection with Escherichia coli and Isospora sp.
Resumo:
Phlebotomine sand flies are the only proven biological vectors of Leishmania parasites. However, Rhipicephalus sanguineus ticks have long been suspected to transmit Leishmania infantum in studies carried out in laboratory and natural conditions. In the present study, 5 mu l of L. infantum promastigotes (1 x 10(6) cells per ml) was injected into the hemocel through the coxa 1 of four engorged females (F1, F2, F3 and F4). Control ticks (F5 and F6) were injected with sterile phosphate-buffered saline (PBS) using the same procedure. Then, these females, their eggs, and the originated larvae were tested by real time polymerase chain reaction (real-time PCR) for the presence of L. infantum kinetoplast DNA (kDNA). Females and eggs were tested after the end of the oviposition period (about 5 weeks post-inoculation) whereas larvae were tested about 4 months after the inoculation of females. All artificially infected females were positive for L. infantum kDNA. In addition, two pools of eggs (one from F2 and other from F4) and four pools of larvae (one from each F1 and F4 and two from F2) were positive for L infantum kDNA. These results showed, for the first time, the transovarial passage of L. infantum kDNA in R. sanguineus ticks, thus suggesting that the transovarial transmission of L. infantum protozoa in ticks is worth to be investigated. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study continues the collection of data on the anterior adhesive areas and secretions of monopisthocotylean monogenean (flatworm) parasites and begins an investigation of their phylogenetic usefulness. Here, two species of parasitic worms from an elasmobranch, Troglocephalus rhinobatidis (Monocotylidae: Dasybatotreminae) and Neoheterocotyle rhinobatidis (Monocotylidae: Heterocotylinae), are compared and contrasted. It has been suggested in recent literature that these two taxa are more closely related than is currently recognised. Our data support this view. Both species have multiple apertures on the ventral anterior margin through which adhesive is secreted. Two types of secretion exit from multiple adjacent duct endings terminating in each aperture: rod-shaped (S1) and spherical-shaped (S2) bodies. S1 bodies of both species show nano-banding of similar size and are membrane bound. Ultrastructure of the glands, ducts, duct endings and secreted adhesive is similar for both species, but aperture shape differs. Away from the adhesive areas, tegumental inclusions are found to differ between the two species and another, apparently non-adhesive, secretion is found in N. rhinobatidis.
Resumo:
The comparative method, the inference of biological processes from phylogenetic patterns, is founded on the reliability of the phylogenetic tree. In attempting to apply the comparative method to the understanding of the evolution of parasitism in the phylum Platyhelminthes, we have highlighted several points we consider to be of value along with many problems. We discuss four of these topics. Firstly, we view the group at a phylum level, in particular discussing the importance of establishing the sister taxon to the obligate parasite group, the Neodermata, for addressing such questions as the monophyly, parasitism or the endo or ectoparasitic nature of the early parasites. The variety of non-congruent phylogenetic trees presented so far, utilising either or both morphological and molecular data, gives rise to the suggestion that any evolutionary scenarios presented at this stage be treated as interesting hypotheses rather than well-supported theories. Our second point of discussion is the conflict between morphological and molecular estimates of monogenean evolution. The Monogenea presents several well-established morphological autapomorphies, such that morphology consistently estimates the group as monophyletic, whereas molecular sequence analyses indicate paraphyly, with different genes giving different topologies. We discuss the problem of reconciling gene and species trees. Thirdly, we use recent phylogenetic results on the tapeworms to interpret the evolution of strobilation, proglottization, segmentation and scolex structure. In relation to the latter, the results presented indicate that the higher cestodes are diphyletic, with one branch difossate and the other tetrafossate. Finally, we use a SSU rDNA phylogenetic tree of the Trematoda as a basis for the discussion of an aspect of the digenean life-cycle, namely the nature of the first intermediate host. Frequent episodes of host-switching, between gastropod and bivalve hosts or even into annelids, are indicated.