964 resultados para Oxygen-binding-properties
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We theoretically investigated how the formation of oxygen vacancies and the addition of niobium and chromium atoms as dopants modify the varistor properties of TiO2. The calculations were carried out at the HF level using a contracted basis set, developed by Huzinaga et al.. to represent the atomic centers on the (110) surface for the large (TiO2)(15) cluster model. The change of the values for the net atomic charges and band gap after oxygen vacancy formation and the presence of dopants in the lattice are analyzed and discussed. It is shown that the formation of oxygen vacancies decreases the band gap while an opposite effect is found when dopants are located in the reduced surface. The theoretical results are compared with available experimental data. A plausible explanation of the varistor behavior of this system is proposed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The dielectric properties of (Ba, Sr)TiO3 films were found to be remarkably sensitive to the postannealing treatment atmosphere. This study demonstrates that postannealing in an oxygen atmosphere increases the dielectric relaxation phenomenon and that postannealing in a nitrogen atmosphere produces a slight dielectric relaxation. Such dependence of the dielectric relaxation was related both to oxygen vacancies and to the presence of negatively charged oxygen, trapped at the grain boundary and/or at the electrode/dielectric film interface. (C) 2000 American Institute of Physics. [S0003-6951(00)00817-2].
Resumo:
The SnO2 based varistor systems recently presented in the literature appear to have a promising potential in commercial applications. Experimental evidence shows that there is a dependence of nonlinear constant values with thermal treatment under different atmospheres. Thermal treatments in oxygen and nitrogen rich atmospheres at 900 degreesC prove this dependence, indicating that the nonlinear constant values are significantly lower when the material is submitted to a nitrogen atmosphere. Moreover, electrical properties can be restored when the varistor is subjected to thermal treatment at the same temperature in an oxygen atmosphere, indicating that the mechanism seems to be reversible. This paper discusses this behavior focusing in the grain boundary region. Ta2O5 mol% concentrations are also analyzed and the results indicate an optimum Ta2O5 concentration of 0.05 mol% for the electrical properties (alpha = 44 and E-B = 6150 V cm(-1)). (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The cubic perovskite related material CaCu3Ti4O12 has attracted a great deal of attention due to the high values of the static dielectric constant, of order 104, approximately constant in the temperature range 100-600 K. The substitution of Ca by Cd results in a similar temperature dependence but a static dielectric constant more than one order of magnitude lower. A theoretical electronic structure study is performed on CaCu3Ti4O12 (CCTO) and CdCu3Ti4O12 (CdCTO) using a tight binding with overlap method. Although the calculations are performed in a paramagnetic configuration, excellent agreement with experiment was found for the calculated band gap of CCTO. In spite of the fact that the band structures of both systems look practically the same, a significant difference is found in the calculated bond strength of Ca-O and Cd-O pairs, driven by the presence of Ti, with Ca-O interaction in CCTO loosened with respect to Cd-O interaction in the cadmium compound. It is suggested that O vacancies are more easily formed in CCTO, this being related to the lower electronegativity of Ca as compared to Cd. The formation of oxygen vacancies could be the origin of the difference in the static dielectric constant of the two compounds.
Resumo:
Electrodes of RhxTi(1-x) O-y nominal composition were prepared by thermal decomposition of the chloride or nitrate precursor salts dissolved in strongly acidic medium and applied by brush to both sides of a Tidegrees support. A systematic study of the influence of calcination temperature and time as well as oxygen flux was conducted. The coatings were characterised by SEM, EDAX, XRD, open circuit potential measurements and cyclic voltammetry (CV). Visible-ultraviolet spectrophotometry was employed to identify the chemical form of the precursor in solution while thermogravimetric analysis (TGA) was used to assess the decomposition temperature ranges. Optimisation of the coating preparation parameters showed coatings obtained from [Rh(H2O)(6)](NO3)(3) precursor dissolved in HNO3 1:2 (v/v) and fired at 430 degreesC for 2 h in a 5 1 min (-1) oxygen stream-furnished stable electrodes having the highest electrochemically active surface area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The structural organization of Sb2O3-SbPO4 glasses has been studied by FTIR, Raman, P-31 MAS and spin echo NMR, Mossbauer and X-ray absorption spectroscopy (EXAFS and XANES at K and L-3,L-1-Sb edges). The combined results can be explained in terms of two potential mechanisms describing the change of the Sb(m) local environment upon incorporation of Q((4))-type phosphate. The formation of the latter species requires anionic compensation that may be adjusted by (a) formation of non bridging oxygen or (b) formation of SbO4E- groups (E = non-bonding electron pair). The second model is favored.
Resumo:
Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)(2)CU(mu-N,O:O'-apm)(2)(H2O)Cu(apm)(2)(H2O)]-5H(2)O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) angstrom, b = 15.6840(1) angstrom, c = 21.5280(1) angstrom, alpha = 93.02(1)degrees, beta = 93.21 (1)degrees, gamma = 92.66(1)degrees and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and beta-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Since high-temperature superconductors were discovered, several studies have been made on their physical properties, attempting to associate them to the origin of superconductivity. Obviously, the oxygen atoms interstitially dissolved in the matrix have an important role in superconductivity, since they move easily in the lattice. In addition, they contribute to hole creation in the CuO2 planes. Anelastic spectroscopy ( internal friction) measurements are sensitive tools for the study of defects in solids, in particular for oxygen mobility. In this paper, Bi2Sr2CaCu2O8+y samples with several different amounts of interstitial oxygen were analysed by means of anelastic spectroscopy measurements. The measurements were performed by using a torsion pendulum operating at a frequency of about 40 Hz. Complex relaxation structures were observed and attributed to the shift of the oxygen interstitial atoms in BiO chains.
Resumo:
The non-ohmic properties of the 98.90% SnO2+(1-x)%CoO+0.05% Cr2O3+0.05% Nb2O5+x% MnO2 varistor system (all of them in mol %), as well as the influence of the oxidizing and reducing atmosphere on this system were studied in this work. Experimental evidence indicates that the electrical properties of the varistor depend on the defects that occur at the grain boundary and on the adsorbed oxygen species such as O''(2), O'(2), O in this region. Thermal treatments at 900 degreesC in oxygen and nitrogen atmospheres indicated such a dependence with the values of the non-linearity coefficient (alpha) increasing under oxygen atmosphere, being reduced in nitrogen atmosphere and restored after a new treatment in oxygen atmosphere, presenting a reversibility in the process. EDS analysis accomplished by SEM showed the distribution of the oxides in the varistor matrix. (C) 2002 Kluwer Academic Publishers.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.