939 resultados para Open Reading Frame
Resumo:
Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA), endonuclease III (nth), O6-methylguanine-DNA methyltransferase (ada gene), photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular aspects of the C. crescentus among other known DNA repair pathways. The observed differences enlarge what is known for DNA repair in the Bacterial world, and provide a useful framework for further experimental studies in this organism.
Resumo:
Abstract Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks.
Resumo:
A microorganism was isolated which could grow on unusually high concentrations of the toxic pollutant 4-chlorophenol. Taxonomic studies showed that the microorganism constituted a novel species within the genus Arthrobacter and it was named Arthrobacter chlorophenolicus A6. A. chlorophenolicus A6 was chromosomally tagged with either the gfp gene, encoding the green fluorescent protein (GFP), or the luc gene, encoding firefly luciferase. When the tagged cells were inoculated into 4-chlorophenol contaminated soil they could completely remove 175 µg/g 4-chlorophenol within 10 days, whereas no loss of 4-chlorophenol was observed in the uninoculated control microcosms. During these experiments the gfp and luc marker genes allowed monitoring of cell number and metabolic status. When A. chlorophenolicus A6 was grown on mixtures of phenolic compounds, the strain exhibited a preference for 4-nitrophenol over 4-chlorophenol, which in turn was preferred over phenol. Analysis of growth and degradation data indicated that the same enzyme system was used for removal of 4-chlorophenol and 4-nitrophenol. However, degradation of unbstituted phenol appeared to be mediated by another or an additional enzyme system. The luc-tagged A. chlorophenolicus A6 gave valuable information about growth, substrate depletion and toxicity of the phenolic compounds in substrate mixtures. The 4-chlorophenol degradation pathway in A. chlorophenolicus A6 was elucidated. The metabolic intermediate subject to ring cleavage was found to be hydroxyquinol and two different pathway branches led from 4-chlorophenol to hydroxyquinol. A gene cluster involved in 4-chlorophenol degradation was cloned from A. chlorophenolicus A6. The cluster contained two functional hydroxyquinol 1,2-dioxygenase genes and a number of other open reading frames presumed to encode enzymes involved in 4-chlorophenol catabolism. Analysis of the DNA sequence suggested that the gene cluster had partly been assembled by horizontal gene transfer. In summary, 4-chlorophenol degradation by A. chlorophenolicus A6 was studied from a number of angles. This organism has several interesting and useful traits such as the ability to degrade high concentrations of 4-chlorophenol and other phenols alone and in mixtures, an unusual and effective 4-chlorophenol degradation pathway and demonstrated ability to remove 4-chlorophenol from contaminated soil.
Resumo:
Parapoxvirus (PPV) are member of a genus in the family poxviridae which currently encompasses four species: the prototype orf virus (OV), bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV) and parapoxvirus of New Zealand red deer (PVNZ). PPVs cause widespread, but localized diseases of small and large ruminants and they can also be transmitted to man. Knowledge of the molecular biology of PPV is still limited as compared to orthopoxviruses, especially vaccinia virus (VACV). The PPV genome displays a high G+C content and relatively small size for poxvirus. Coventional electron microscopy displays PPV virions with ovoid shape and slightly smaller in size than the brickshaped orthopoxviruses. The most striking feature, which readily enables identification of PPV, is a tubule-like structure that surrounds the particle in a spiral fashion. PPV genome organization and content is very similar to that of other poxviruses, the central region contain 88 genes which are present in all poxviruse, in contrast the terminal regions are variable and contain a set of genes unique to the genus PPV. Genes in the near-terminal regions of the genome are frequently not essential for growth in cultured cells encoding factors with important roles in virushost interactions including modulating host immune responses and determining host range. Recently it was suggested that the open reading frames (ORFs) 109 and 110 of the OV genome have a major role in determining species specificity during natural infection in sheep and goats. This hypothesis is based on the analysis of a few number of sequences of different sheep and goats viral isolates. PPV replicate into the cytoplasm of infected cells and produce three structurally different infectious particles: the intracellular mature virions (IMV), intracellular enveloped virions (IEV) and the extracellular enveloped virions (EEV). The vaccinia A33R and A34R hotologue proteins encoded by the ORFS 109 and 110 are expressed in the envelope of the IEV and EEV. The F1L immunodominant protein of orf virus is the major component of the surface tubule structure of the IMV and can post-translationaly insert into membranes via Cterminal, hydrofobic anchor sequence like its orthologue VACV H3L protein. Moreover the F1L protein binds to glycosaminoglycans on the cell surface and has an important role in IMV adsorption to mammalian cells. In this study we investigated the morphogenesis of the PPV through the construction of a mutant virus deleted of the F1L protein. A study of the deleted virus life cycle was conducted in different type of cells and its morphology was observed with electron microscopy. It was demonstared that F1L protein have important role in morphogenesis and infectivity. Moreover it is essential to determine the spiral fashion of the tubule like structure of the virion surface. Some pathogenetic aspects of the PPV infection were studied, in particular the protein implicated in the host range were analysed in detail. An experimental infection with OV and PCPV was conducted in goats and sheep. After infection, the severity of the lesions were comparable in both the animal species. The OV did not result in severe disease neither in sheep nor in goats, suggesting that host factors, rather than virus strain characteristics, may play an important role in the pathogenesis of the Parapoxvirus infections. The PCPV failed to produce any lesion in both sheep and goats, ruling out the possibility of any recombination between PCPV and OV during natural infection in these animal species. The phylogenetic analysis of the ORFs 109 and 110 from several goats and sheep viral isolates showed a clustering based on the antigenic content of the protein that was independent from species and geographic origin.
Resumo:
Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.
Resumo:
Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element resembling gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (containing the genes pitA, sipA, pitB, srtG1, and srtG2) codes for a novel functional pilus in pneumococcus. Therefore, there are two pilus islets identified so far in this pathogen (PI-1 and PI-2). Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. PI-2 is associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging in both industrialized and developing countries. Interestingly, strains belonging to clonal complex 271 (CC271) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that may play a role in the initial host cell contact to the respiratory tract. In addition, the pilus proteins are potential antigens for inclusion in a new generation of pneumococcal vaccines. Adherence by pili could represent important factor in bacterial community formation, since it has been demonstrated that bacterial community formation plays an important role in pneumococcal otitis media. In vitro quantification of bacterial community formation by S. pneumoniae was performed in order to investigate the possible role of pneumococcal pili to form communities. By using different growth media we were not able to see clear association between pili and community formation. But our findings revealed that strains belonging to MLST clonal complex CC15 efficiently form bacterial communities in vitro in a glucose dependent manner. We compared the genome of forty-four pneumococcal isolates discovering four open reading frames specifically associated with CC15. These four genes are annotated as members of an operon responsible for the biosynthesis of a putative lanctibiotic peptide, described to be involved in bacterial community formation. Our experiments show that the lanctibiotic operon deletion affects glucose mediated community formation in CC 15 strain INV200. Moreover, since glucose consumption during bacterial growth produce an acidic environment, we tested bacterial community formation at different pH and we showed that the lanctibiotic operon deletion affected pH mediated community formation in CC 15 strain INV200. In conclusion, these data demonstrate that the putative lanctibiotic operon is associated with pneumococcal CC 15 strains in vitro bacterial community formation.
Resumo:
CpGV-MCp5 is a natural mutant of the Cydia pomonella Granulovirus (Mexican isolate) (CpGV-M) that harbors an insect host transposon termed TCl4.7 in its genome. TCl4.7 is located between the open reading frames Cp15 and Cp16 and separates two homologous regions hr3 and hr4, which have been recently shown to be origins of replication of CpGV-M. The MCp5 has a significant replication disadvantage in the presence of the wild-type CpGV-M. In this study, the possible effects of TCl4.7 transposon insertion on the genome function of its insertion site has been analysed. The role of Cp15 and Cp16 in the context of the virus infection cycle was examined by generating a CpGV-Bacmid (CpBAC) and Cp15 knock-out (CpBACCp15KO) and Cp16 knock-out (CpBACCp16KO) mutants. The mutant CpBACCp15KO was not able to replicate in CM larvae suggesting that Cp15 was essential for virus replication. In contrast, the mutant CpBACCp16KO infected CM larvae and produced viable occlusion bodies (OBs) demonstrating that Cp16 is a non-essential gene for virus in vivo infection of C. pomonella. The temporal transcription of Cp15 and Cp16, as well as of Cp31 (F protein) as a control, was analysed using RT-PCR and quantitative real-time PCR. It suggested a general delay or reduction of gene transcription of MCp5 compared to the parental CpGV-M. Western blot analyses using anti-Cp15 and anti-Cp16 polyclonal antibodies, however, did not show any immuno-reactive response. Thus, a direct influence of TCl4.7 on the expression of Cp15 and Cp16 could not be substantiated. To investigate whether the interruption of hr3 and hr4 palindromes affects the virus replication, two mutant bacmids with a deletion of hr3 and hr4 (CpBAChr3/hr4-KO) and another with an insertion of a Kanamycin resistance cassette between hr3 and hr4 (CpBAChr3-kan-hr4) were generated. Both mutant bacmids replicated and produced infectious virus OBs, which did not significantly differ in their median lethal concentration (LC50) and median survival time (ST50) compared to the parental CpBAC. Interestingly, the mutant CpBAChr3-kan-hr4 was very effectively out-competed by parental CpBAC, when CM larvae were co-infected with known ratios of OBs of CpBAC and the mutant CpBAChr3-kan-hr4. These observations suggested a functional co-operation between hr3 and hr4 which was interrupted by the KanR insertion in CpBAChr3-kan-hr4 and possibly by TCl4.7 transposon insertion in the mutant MCp5. This hypothesis may explain the observed replication disadvantage of the mutants MCp5 and CpBAChr3-kan-hr4 in the presence of the parental viruses CpGV-M and CpBAC, respectively.
Resumo:
Bei Menschen mit unreifem oder geschwächtem Immunsystem kann eine Infektion mit dem Humanen Cytomegalovirus (HCMV) zu schweren Erkrankungen führen. Hingegen kontrolliert das Immunsystem bei Gesunden die HCMV-Infektion fast vollständig. Wichtige Effektoren hierbei sind CD8-positive zytotoxische T-Zellen (CTLs). Um dieser Kontrolle entgegenzuwirken, exprimiert HCMV die als Immunevasine bekannten Proteine gpUS2, gpUS3, gpUS6 und gpUS11. Sie greifen an unterschiedlichen Stellen in die MHC-Klasse-I (MHC-I)-vermittelte Antigenpräsentation ein und schützen so infizierte Zellen vor der Erkennung durch CTLs. Zusätzlich waren auch den Tegumentproteinen pp65 und pp71 immunevasive Funktionen zugeschrieben worden, wobei jedoch über diese Funktionen bisher nur wenig bekannt war. Daher sollte im ersten Teil der vorliegenden Arbeit die Beteiligung von pp71 an der MHC-I-Immunevasion von HCMV-infizierten humanen Fibroblasten untersucht werden. Zu diesem Zweck wurden HCMV-Mutanten eingesetzt, die pp71 verstärkt exprimierten. Entgegen der postulierten immunevasiven Rolle von pp71 konnte zu keinem Zeitpunkt der Infektion ein inhibierender Effekt von pp71 auf die Antigenpräsentation infizierter Fibroblasten festgestellt werden. Sehr früh nach Infektion war sogar eine pp71-vermittelte Steigerung der Präsentation des HCMV-Proteins IE1 zu beobachten. Um zu prüfen, ob es auch während einer natürlichen Infektion zu einer Erhöhung der pp71-Expression und den damit verbundenen Effekten kommen kann, wurde untersucht, ob die Expression von pp71 durch Zellstress induzierbar ist. Dies erschien möglich, da der Leserahmen für pp71 von einer bizistronischen mRNA kodiert wird. Über die Erzeugung von Zellstress durch Serumentzug konnte zum ersten Mal gezeigt werden, dass die Expression des wichtigen viralen Transaktivators pp71 abhängig vom physiologischen Zustand der infizierten Zellen reguliert wird. Im zweiten Teil der vorliegenden Arbeit sollte die Rolle des Immunevasins gpUS3 näher beleuchtet werden. Sein Wirkmechanismus war, wie die Mechanismen der drei anderen Immunevasine gpUS2, gpUS6 und gpUS11, bereits ausführlicher untersucht worden. Der individuelle Beitrag von gpUS3 zur MHC-I-Immunevasion in infizierten Zellen sowie ein mögliches Zusammenspiel mit den anderen Immunevasinen waren hingegen noch zu erforschen. Hierzu wurden HCMV-Mutanten eingesetzt, die keines oder nur eines der Immunevasine exprimierten. Mit ihrer Hilfe konnte gezeigt werden, dass gpUS3 sehr früh nach Infektion überraschenderweise die Immunevasion in infizierten Fibroblasten behindert. Zu späteren Infektionszeitpunkten war dagegen ein immunevasiver Effekt von gpUS3 in Form einer Kooperation mit jeweils einem der drei anderen Immunevasine festzustellen. Aus diesen Ergebnissen ergibt sich die neue Hypothese, dass die Hauptaufgabe von gpUS3 im Rahmen der HCMV-Immunevasion in der Regulation der Funktionen der übrigen Immunevasine liegt.
Resumo:
Many bivalve species possess two distinct mtDNA lineages, called F and M, respectively inherited maternally and paternally: this system is called doubly uniparental inheritance (DUI). The main experimental project of my PhD was the quantification of the two mtDNAs during the development of the DUI species Ruditapes philippinarum, from early embryos to sub-adults, using Real-Time qPCR. I identified the time interval in which M mtDNA is lost from female individuals, while it is retained in males (which are heteroplasmic through all of their life cycle). The results also suggested absence of mtDNA replication during early embryogenesis, a process constituting a bottleneck that highly reduces the copy number of mtDNA molecules in cells of developing larvae. In males this bottleneck may produce cells homoplasmic for M mtDNA, and could be considered as a first step of the segregation of M in the male germ line. Another finding was the characterization, in young clams approaching the first reproductive season, of a significant boost in copy number of F mtDNA in females and of M in males. Given the age of animals in which this mtDNA-specific growth was observed, the finding could probably be the outcome of the first round of gonads and gametes production. Other lines of research included the characterization of the unassigned regions in mt genomes of DUI bivalves. These regions can harbor signals involved in the control of replication and/or transcription of the mtDNA molecule, as well as additional open reading frames (ORFs) not related to oxidative phosphorylation. These features in DUI species could be associated to the maintenance of separate inheritance routes for the two mtDNAs. Additional ORFs are also found in other animal mt genomes: I summarized the presence of gene duplications as a co-author in a review focusing on animal mt genomes with unusual gene content.
Resumo:
Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.
Resumo:
Pseudogenes (Ψs), including processed and non-processed Ψs, are ubiquitous genetic elements derived from originally functional genes in all studied genomes within the three kingdoms of life. However, systematic surveys of non-processed Ψs utilizing genomic information from multiple samples within a species are still rare. Here a systematic comparative analysis was conducted of Ψs within 80 fully re-sequenced Arabidopsis thaliana accessions, and 7546 genes, representing ~28% of the genomic annotated open reading frames (ORFs), were found with disruptive mutations in at least one accession. The distribution of these Ψs on chromosomes showed a significantly negative correlation between Ψs/ORFs and their local gene densities, suggesting a higher proportion of Ψs in gene desert regions, e.g. near centromeres. On the other hand, compared with the non-Ψ loci, even the intact coding sequences (CDSs) in the Ψ loci were found to have shorter CDS length, fewer exon number and lower GC content. In addition, a significant functional bias against the null hypothesis was detected in the Ψs mainly involved in responses to environmental stimuli and biotic stress as reported, suggesting that they are likely important for adaptive evolution to rapidly changing environments by pseudogenization to accumulate successive mutations.
Resumo:
Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.
Resumo:
The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.
Resumo:
In this study, we present a novel genotyping scheme to classify German wild-type varicella-zoster virus (VZV) strains and to differentiate them from the Oka vaccine strain (genotype B). This approach is based on analysis of four loci in open reading frames (ORFs) 51 to 58, encompassing a total length of 1,990 bp. The new genotyping scheme produced identical clusters in phylogenetic analyses compared to full-genome sequences from well-characterized VZV strains. Based on genotype A, D, B, and C reference strains, a dichotomous identification key (DIK) was developed and applied for VZV strains obtained from vesicle fluid and liquor samples originating from 42 patients suffering from varicella or zoster between 2003 and 2006. Sequencing of regions in ORFs 51, 52, 53, 56, 57, and 58 identified 18 single-nucleotide polymorphisms (SNPs), including two novel ones, SNP 89727 and SNP 92792 in ORF51 and ORF52, respectively. The DIK as well as phylogenetic analysis by Bayesian inference showed that 14 VZV strains belonged to genotype A, and 28 VZV strains were classified as genotype D. Neither Japanese (vaccine)-like B strains nor recombinant-like C strains were found within the samples from Germany. The novel genotyping scheme and the DIK were demonstrated to be practical and simple and allow the highly efficient replication of phylogenetic patterns in VZV initially derived from full-genome DNA sequence analyses. Therefore, this approach may allow us to draw a more comprehensive picture of wild-type VZV strains circulating in Germany and Central Europe by high-throughput procedures in the future.
Resumo:
A comprehensive genetic analysis of 60 Mycoplasma sp. bovine group 7 isolates from different geographic origins and epidemiological settings is presented. Twenty-four isolates were recovered from the joints of calves during sporadic episodes of polyarthritis in geographically distinct regions of Queensland and New South Wales, Australia, including two clones of the type strain PG5O. A further three Australian isolates were also recovered from the tympanic bulla, retropharyngeal lymph node and the lung and another three isolates had unconfirmed histories. Six isolates originated from Germany, Portugal, Nigeria, and France. Twenty-four epidemiologically related isolates of Mycoplasma sp. bovine group 7 were recovered from multiple tissue sites and body fluids of infected calves with polyarthritis, mastitic milk, and from the stomach contents, lung and liver from aborted foetuses in three large, centrally managed dairy herds in New South Wales, Australia. Restriction endonuclease analysis (REA) of genomic DNA differentiated 29 Cfol profiles among these 60 isolates and grouped all 24 epidemiologically related isolates in a defined pattern showing a clonal origin. Three isolates of this clonal cluster were recovered from mastitic milk and the synovial exudate of clinically-affected calves and appeared sporadically for periods up to 18 months after the initial outbreak of polyarthritis indicating a persistent, close association of the organism with cattle in these herds. The Cfol profile representative of the clonal cluster was distinguishable from profiles of isolates recovered from multiple, unrelated cases of polyarthritis in Queensland and New South Wales and from other countries. All 24 isolates from the clonal cluster possessed a plasmid (pBG7AU) with a molecular size of 1022 bp. DNA sequence analysis of pBG7AU identified two open reading frames sharing 81 and 99% DNA sequence similarity with hypothetical replication control proteins A and B respectively, previously described in plasmid pADB201 isolated from M. mycoides subspecies mycoides. Other isolates of bovine group 7, epidemiologically unrelated to the clonal cluster, including two clones of the type strain PG5O, possessed a similar-sized plasmid. These data confirm that Mycoplasma sp. bovine group 7 is capable of migrating to, and multiplying within, different tissue sites within a single animal and among different animals within a herd.