983 resultados para Ocular surface failure
Resumo:
The purpose of this in vitro study was to evaluate alterations in the surface roughness and micromorphology of human enamel submitted to three prophylaxis methods. Sixty-nine caries-free molars with exposed labial surfaces were divided into three groups. Group I was treated with a rotary instrument set at a low speed, rubber clip and a mixture of water and pumice; group II with a rotary instrument set at a low speed, rubber cup and prophylaxis paste Herjos-F (Vigodent S/A Industria e Comercio, Rio de Janeiro, Brazil); and group III with sodium bicarbonate spray Profi II Ceramic (Dabi A dante Indtistrias Medico Odontologicas Ltda, Ribeirao Preto, Brazil). All procedures were performed by the same operator for 10 s, and samples were rinsed and stored in distilled water. Pre and post-treatment surface evaluation was completed using a surface profilometer (Perthometer S8P Marh, Perthen, Germany) in 54 samples. In addition, the other samples were coated with gold and examined in a scanning electron microscope (SEM). The results of this study were statistically analyzed with the paired t-test (Student), the Kruskal-Wallis test and the Dunn (5%) test. The sodium bicarbonate spray led to significantly rougher surfaces than the pumice paste. The use of prophylaxis paste showed no statistically significant difference when compared with the other methods. Based on SEM analysis, the sodium bicarbonate spray presented an irregular surface with granular material and erosions. Based on this study, it can be concluded that there was an increased enamel stuface roughness when teeth were treated with sodium bicarbonate spray when compared with teeth treated with pumice paste.
Resumo:
This study evaluated the 10-year clinical performance of high-viscosity glass-ionomer cement placed in posterior permanent teeth by means of the Atraumatic Restorative Treatment (ART) approach. One operator placed 167 single- and 107 multiple-surface restorations in 43 high-risk caries pregnant women (mean decayed teeth = 9.8 +/- 5.5). Examinations were performed at 1-, 2-, and 10-year intervals according to ART criteria. In the last evaluation, the US Public Health Service (USPHS) criteria were also used. After 10 years, 129 restorations (47.1%) were evaluated and achieved a cumulative survival rate of 49.0% (SE 7.2%). The 10-year survival of single- and multiple-surface ART restorations assessed using the ART criteria were 65.2% (SE 7.3%) and 30.6% (SE 9.9%), respectively. This difference was significant (jackknife SE of difference; p < 0.05). Using the USPHS criteria, the 10-year survival of single- and multiple-surface ART restorations were 86.5% and 57.6%, respectively. The primary causes of failure were total loss (9.3%) and marginal defects (5.4%). The survival rates observed, especially for the single-surface restorations, confirm the potential of the ART approach for restoring and saving posterior permanent teeth.
Resumo:
Objectives: To evaluate the influence of two surface sealants (BisCover/Single Bond) and three application techniques (unsealed/conventional/co-polymerization) on the roughness of two composites (Filtek Z250/Z350) after the toothbrushing test. Methods: Seventy-two rectangular specimens (5 mm x 10 mm x 3 mm) were fabricated and assigned into 12 groups (n = 6). Each sample was subjected to three random roughness readings at baseline, after 100,000 (intermediate), and 200,000 (final) toothbrushing strokes. Roughness (R) at each stage was obtained by the arithmetic mean of the reading of each specimen. Sealant removal was qualitatively examined (optical microscope) and classified into scores (0-3). Data were analyzed by Student`s paired t-test, two-way ANOVA/Tukey`s test, and by Wilcoxon, Kruskal-Wallis and Miller`s test (alpha = 0.05). Results: Z250 groups at baseline did not differ statistically from each other. Unsealed Z350 at baseline had lower R values. All the unsealed groups presented gradual decrease in R from baseline to final brushing. From baseline to the inter-mediate stage, Z250 co-polymerized groups presented a significant reduction in R (score 3). Conventionally sealed groups had no significant changes in R (scores 2-0.8). From baseline to the intermediate stage, the conventionally sealed Z350 Single Bond group had an increase in R (score 1.5). In the final stage, all the conventionally sealed groups presented a reduction in R (scores 0.7-0). Co-polymerized Single Bond groups had a significant reduction in R (scores 2.5-2.7), and co-polymerized BisCover groups an increase in R (scores 2.8-3). Conclusions: At any brushing stage, sealed composites presented superior performance when compared with unsealed composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the effect of EDTA pre-treatment of dentine on resistance to degradation of the bond between dentine and resin-modified glass-ionomer cements. Methods: Sixty non-carious human molars underwent cavity preparations. Teeth were restored with Fuji II LC or Vitremer. Half of the cavities were restored following manufacturers` instructions whereas the other half was pre-treated with EDTA (0.1 M, pH 7.4) for 60 s. Teeth were stored in water at 37 degrees C for 24 h, 3 months or submitted to 10% NaOCl immersion for 5 h. Teeth were sectioned into beams (1 +/- 0.1 mm) and tested to failure in tension at 0.5 mm/min. Bond strength data (MPa) were analyzed by ANOVA and SNK multiple-comparisons tests (p < 0.05). Results: When EDTA was used for pre-treatment of dentine, higher bond strengths were observed for both cements. Degradation challenges produced a decrease in bond strength values only in the Vitremer group. This decrease was avoided when EDTA was used for dentine treatment before restoring with Vitremer. Conclusions: EDTA pre-treatment of dentine increases bond strength of resin modified glass-ionomers cements to dentine and improves resistance to degradation of the bond between Vitremer and dentine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the tensile bond strength of indirect composites repaired with different surface treatments and direct composites. Methods: 180 specimens were prepared with Targis, belleGlass HP and Sculpture indirect composites, light-activated and post-cured according to the manufacturers` recommendations. The specimens were stored in distilled water for 24 hours at 37 degrees C. The bonding surfaces were prepared with air abrasion, hydrofluoric acid or hydrofluoric acid followed by a neutralizing solution. All the treated surfaces were subject to the application of a silane and a bonding agent before the repair procedures with Tetric Ceram and Tetric Flow for the Targis specimens, Herculite XRV and Revolution for the belleGlass HP specimens and Sculp-It and Flow-It for Sculpture specimens. The tensile bond strength tests were carried out using a universal testing machine at cross-head speed of 0.5 mm/minute. The type of fracture was observed under a light microscope at x40 magnification. Data were analyzed by a two-way ANOVA and Tukey`s post-hoc tests (P<0.05). Results: Targis showed a statistically higher repair bond strength than belleGlass HP and Sculpture, which were not significantly different from each other. Air abrasion increased the repair bond strength of belleGlass HP and Sculpture. For Targis, all the surface treatments resulted in similar repair bond strength. The different viscosity of repair composites did not affect the repair of indirect composites. Fractured surfaces showed mostly adhesive failures, mainly with hydrofluoric acid treatment.
Resumo:
Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
Purpose: Chipping within veneering porcelain has resulted in high clinical failure rates for implant-supported zirconia (yttria-tetragonal zirconia polycrystals [Y-TZP]) bridges. This study evaluated the reliability and failure modes of mouth-motion step-stress fatigued implant-supported Y-TZP versus palladium-silver alloy (PdAg) three-unit bridges. Materials and Methods: Implant-abutment replicas were embedded in polymethylmethacrylate resin. Y-TZP and PdAg frameworks, of similar design (n = 21 each), were fabricated, veneered, cemented (n = 3 each), and Hertzian contact-tested to obtain ultimate failure load. In each framework group, 18 specimens were distributed across three step-stress profiles and mouth-motion cyclically loaded according to the profile on the lingual slope of the buccal cusp of the pontic. Results: PdAg failures included competing flexural cracking at abutment and/or connector area and chipping, whereas Y-TZP presented predominantly cohesive failure within veneering porcelain. Including all failure modes, the reliability (two-sided at 90% confidence intervals) for a ""mission"" of 50,000 and 100,000 cycles at 300 N load was determined (Alta Pro, Reliasoft, Tucson, AZ, USA). No difference in reliability was observed between groups for a mission of 50,000. Reliability remained unchanged for a mission of 100,000 for PdAg, but significantly decreased for Y-TZP. Conclusions: Higher reliability was found for PdAg for a mission of 100,000 cycles at 300 N. Failure modes differed between materials.
Resumo:
Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer-veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer-veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer-veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer-veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010; 23: 434-442.
Resumo:
Cell-surface proteoglycans are involved in lymphocyte migration and activation. This study investigated the expression of syndecan-1, syndecan-4, and glypican in peripheral blood lymphocytes and by lymphocytes in variously inflamed periodontal tissues. Gingival specimens from healthy, gingivitis, or chronic periodontitis sites were stained by means of antibodies against B- and T-lymphocytes and also syndecan-1, syndecan-4, and glypican. Syndecan-1 expression by peripheral blood mononuclear cells (PBMC) from healthy, gingivitis, and chronic periodontitis subjects was assessed by flow cytometry. Syndecan-1 was expressed by B-cells/plasma cells but not T-cells in both gingivitis and chronic periodontitis lesions, Both B-cells/plasma cells and T-cells in gingivitis and chronic periodontitis expressed syndecan-4. Glypican was expressed only by macrophages. Stimulation of PBMC with mitogens and growth factors modulated syndecan-1 expression in both the T- and B-cells. Thus, cell-surface proteoglycan expression by lymphocytes in periodontal inflammation is cell-type-specific and may be modulated by inflammation.
Resumo:
Objectives: This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Methods: Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 mu l) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2 mm x 2 mm x 2 mm) (n = 5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10 min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (p < 0.05). Results: There were significant differences between solvent retention(%) and evaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (p < 0.05). For both conditions, the greatest amount of retained solvent was observed for HEMA/water primer. The rate of solvent evaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. Conclusions: The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009
Resumo:
The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.