940 resultados para Object Oriented Programming (Computing)
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
Abstract in English : Ubiquitous Computing is the emerging trend in computing systems. Based on this observation this thesis proposes an analysis of the hardware and environmental constraints that rule pervasive platforms. These constraints have a strong impact on the programming of such platforms. Therefore solutions are proposed to facilitate this programming both at the platform and node levels. The first contribution presented in this document proposes a combination of agentoriented programming with the principles of bio-inspiration (Phylogenesys, Ontogenesys and Epigenesys) to program pervasive platforms such as the PERvasive computing framework for modeling comPLEX virtually Unbounded Systems platform. The second contribution proposes a method to program efficiently parallelizable applications on each computing node of this platform. Résumé en Français : Basée sur le constat que les calculs ubiquitaires vont devenir le paradigme de programmation dans les années à venir, cette thèse propose une analyse des contraintes matérielles et environnementale auxquelles sont soumises les plateformes pervasives. Ces contraintes ayant un impact fort sur la programmation des plateformes. Des solutions sont donc proposées pour faciliter cette programmation tant au niveau de l'ensemble des noeuds qu'au niveau de chacun des noeuds de la plateforme. La première contribution présentée dans ce document propose d'utiliser une alliance de programmation orientée agent avec les grands principes de la bio-inspiration (Phylogénèse, Ontogénèse et Épigénèse). Ceci pour répondres aux contraintes de programmation de plateformes pervasives comme la plateforme PERvasive computing framework for modeling comPLEX virtually Unbounded Systems . La seconde contribution propose quant à elle une méthode permettant de programmer efficacement des applications parallélisable sur chaque noeud de calcul de la plateforme
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
This paper presents a relational positioning methodology for flexibly and intuitively specifying offline programmed robot tasks, as well as for assisting the execution of teleoperated tasks demanding precise movements.In relational positioning, the movements of an object can be restricted totally or partially by specifying its allowed positions in terms of a set of geometric constraints. These allowed positions are found by means of a 3D sequential geometric constraint solver called PMF – Positioning Mobile with respect to Fixed. PMF exploits the fact that in a set of geometric constraints, the rotational component can often be separated from the translational one and solved independently.
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
CORBA (Common Object Request Broker Architecture) on laajalle levinnyt ja teollisuudessa yleisesti käytetty hajautetun tietojenkäsittelyn arkkitehtuuri. CORBA skaalautuu eri kokoisiin tarpeisiin ja sitä voidaan hyödynntää myös sulautetuissa langattomissa laitteissa. Oleellista sulautetussa ympäristössä on rakentaa rajapinnat kevytrakenteisiksi, pysyviksi ja helposti laajennettaviksi ilman että yhteensopivuus aikaisempiin rajapintoihin olisi vaarassa. Langattomissa laitteissa resurssit, kuten muistin määrä ja prosessointiteho, ovat hyvin rajalliset, joten rajapinta tulee suunnitella ja toteuttaa optimaalisesti. Palveluiden tulee ottaa huomioon myös langattomuuden rajoitukset, kuten hitaat tiedonsiirtonopeudet ja tiedonsiirron yhteydettömän luonteen. Työssä suunniteltiin ja toteutettiin CORBA-rajapinta GSM-päätelaitteeseen, jonka on todettu täyttävän sille asetetut tavoitteet. Rajapinta tarjoaa kaikki yleisimmät GSM-terminaalin ominaisuudet ja on laajennettavissa tulevia tuotteita ja verkkotekniikoita varten. Laajennettavuutta saavutetaan esimerkiksi kuvaamalla terminaalin ominaisuudet yleisellä kuvauskielellä, kuten XML:lla (Extensible Markup Language).
Resumo:
This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
Concurrent aims to be a different type of task distribution system compared to what MPI like system do. It adds a simple but powerful application abstraction layer to distribute the logic of an entire application onto a swarm of clusters holding similarities with volunteer computing systems. Traditional task distributed systems will just perform simple tasks onto the distributed system and wait for results. Concurrent goes one step further by letting the tasks and the application decide what to do. The programming paradigm is then totally async without any waits for results and based on notifications once a computation has been performed.
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.
Resumo:
Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.