946 resultados para OXIDIZED LIPOPROTEINS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Lipoproteína lipasa (LPL, E.C. 3.1.1.34) es una glucoproteína sintetizada por diferentes tipos celulares, principalmente en adipocitos, células musculares y marcófagos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Lipoproteína lipasa (LPL, E.C. 3.1.1.34) es una glucoproteína sintetizada por diferentes tipos celulares, principalmente en adipocitos, células musculares y marcófagos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the efficiency of advanced oxidative processes (AOPs) were investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX). The results indicated that BTX can be effectively oxidized by the UV-A-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolyc intermediates at reaction times of about 30 min. Preliminary investigations using solar light suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen)2]2+) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen)2]3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10-6 to 1.3x10-4 mol L-1. The detection limit was 5.0x10-6 mol L-1and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10-5 mol L-1 N-acetyl-L-cysteine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low quality mine drainage from tailings facilities persists as one of the most significant global environmental concerns related to sulphide mining. Due to the large variation in geological and environmental conditions at mine sites, universal approaches to the management of mine drainage are not always applicable. Instead, site-specific knowledge of the geochemical behaviour of waste materials is required for the design and closure of the facilities. In this thesis, tailings-derived water contamination and factors causing the pollution were investigated in two coeval active sulphide mine sites in Finland: the Hitura Ni mine and the Luikonlahti Cu-Zn-Co-Ni mine and talc processing plant. A hydrogeochemical study was performed to characterise the tailingsderived water pollution at Hitura. Geochemical changes in the Hitura tailings were evaluated with a detailed mineralogical and geochemical investigation (solid-phase speciation, acid mine drainage potential, pore water chemistry) and using a spatial assessment to identify the mechanisms of water contamination. A similar spatial investigation, applying selective extractions, was carried out in the Luikonlahti tailings area for comparative purposes (Hitura low-sulphide tailings vs. Luikonlahti sulphide-rich tailings). At both sites, hydrogeochemistry of tailings seepage waters was further characterised to examine the net results of the processes observed within the impoundments and to identify constraints for water treatment. At Luikonlahti, annual and seasonal variation in effluent quality was evaluated based on a four-year monitoring period. Observations pertinent to future assessment and mine drainage prevention from existing and future tailings facilities were presented based on the results. A combination of hydrogeochemical approaches provided a means to delineate the tailings-derived neutral mine drainage at Hitura. Tailings effluents with elevated Ni, SO4 2- and Fe content had dispersed to the surrounding aquifer through a levelled-out esker and underneath the seepage collection ditches. In future mines, this could be avoided with additional basal liners in tailings impoundments where the permeability of the underlying Quaternary deposits is inadequate, and with sufficiently deep ditches. Based on the studies, extensive sulphide oxidation with subsequent metal release may already initiate during active tailings disposal. The intensity and onset of oxidation depended on e.g. the Fe sulphide content of the tailings, water saturation level, and time of exposure of fresh sulphide grains. Continuous disposal decreased sulphide weathering in the surface of low-sulphide tailings, but oxidation initiated if they were left uncovered after disposal ceased. In the sulphide-rich tailings, delayed burial of the unsaturated tailings had resulted in thick oxidized layers, despite the continuous operation. Sulphide weathering and contaminant release occurred also in the border zones. Based on the results, the prevention of sulphide oxidation should already be considered in the planning of tailings disposal, taking into account the border zones. Moreover, even lowsulphide tailings should be covered without delay after active disposal ceases. The quality of tailings effluents showed wide variation within a single impoundment and between the two different types of tailings facilities assessed. The affecting factors included source materials, the intensity of weathering of tailings and embankment materials along the seepage flow path, inputs from the process waters, the water retention time in tailings, and climatic seasonality. In addition, modifications to the tailings impoundment may markedly change the effluent quality. The wide variation in the tailings effluent quality poses challenges for treatment design. The final decision on water management requires quantification of the spatial and seasonal fluctuation at the site, taking into account changes resulting from the eventual closure of the impoundment. Overall, comprehensive hydrogeochemical mapping was deemed essential in the identification of critical contaminants and their sources at mine sites. Mineralogical analysis, selective extractions, and pore water analysis were a good combination of methods for studying the weathering of tailings and in evaluating metal mobility from the facilities. Selective extractions with visual observations and pH measurements of tailings solids were, nevertheless, adequate in describing the spatial distribution of sulphide oxidation in tailings impoundments. Seepage water chemistry provided additional data on geochemical processes in tailings and was necessary for defining constraints for water treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins are potential targets for singlet molecular oxygen (¹O2) oxidation. Damages occur only at tryptophan, tyrosine, histidine, methionine, and cysteine residues at physiological pH, generating oxidized compounds such as hydroperoxides. Therefore, it is important to understand the mechanisms by which ¹O2, hydroperoxides and other oxidized products can trigger further damage. The improvement and development of new tools, such as clean sources of ¹O2 and isotopic labeling approaches in association with HPLC/mass spectrometry detection will allow one to elucidate mechanistic features involving ¹O2-mediated protein oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technique typically employs a dual fluidized bed system where a metal oxide is used as a solid oxygen carrier that transfers the oxygen from combustion air to the fuel. The oxygen carrier is looping between the air reactor, where it is oxidized by the air, and the fuel reactor, where it is reduced by the fuel. Hence, air is not mixed with the fuel, and outgoing CO2 does not become diluted by the nitrogen, which gives a possibility to collect the CO2 from the flue gases after the water vapor is condensed. CLC is being proposed as a promising and energy efficient carbon capture technology, since it can achieve both an increase in power station efficiency simultaneously with low energy penalty from the carbon capture. The outcome of a comprehensive literature study concerning the current status of CLC development is presented in this thesis. Also, a steady state model of the CLC process, based on the conservation equations of mass and energy, was developed. The model was used to determine the process conditions and to calculate the reactor dimensions of a 100 MWth CLC system with bunsenite (NiO) as oxygen carrier and methane (CH4) as fuel. This study has been made in Oxygen Carriers and Their Industrial Applications research project (2008 – 2011), funded by the Tekes – Functional Material program. I would like to acknowledge Tekes and participating companies for funding and all project partners for good and comfortable cooperation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins are the most used drugs for the treatment of hyperlipidemia in primary and secondary prevention, with the aim of decreasing the levels of plasmatic cholesterol- lipoproteins. Owing to their structural similarity to the substrate HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), they inhibit the HMG-CoA reductase enzyme, disrupting the cholesterol biosynthesis. Currently, six therapeutic statins are available: lovastatin (Mevacor) and pravastatin (Pravachol), which are natural, sinvastatin (Zocor), a semi-synthetic derivative, and the totally synthetic statins, fluvastatin (Lescol), atorvastatin (Lipitor) and rosuvastatin (Crestor). Recent investigations have showed other important effects of statins, such as antineoplastic action and improvement in endothelial function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review here the chemistry of reactive oxygen and nitrogen species, their biological sources and targets; particularly, biomolecules implicated in the redox balance of the human blood, and appraise the analytical methods available for their detection and quantification. Those biomolecules are represented by the enzymatic antioxidant defense machinery, whereas coadjutant reducing protection is provided by several low molecular weight molecules. Biomolecules can be injured by RONS yielding a large repertoire of oxidized products, some of which can be taken as biomarkers of oxidative damage. Their reliable determination is of utmost interest for their potentiality in diagnosis, prevention and treatment of maladies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desulphurization process by adsorption was studied employing a commercial diesel dooped with 1000 mg/L of benzothiophene and dibenzothiophene. The adsorbents materials employed were three types of activated alumina (acid, basic and neutral). For comparison, adsorption process was made also using oxidized diesel sample. The results showed that the adsorbents were selective for sulphur compounds removal from fuels. The contact time have influence in adsorption process achieving 80% of removal for not oxidized dibenzothiophene. The three studied alumina types showed similar behavior and a greater selective in dibenzothiophene adsorption than benzothiophene. Dibenzothiophene removal is more effective in samples not oxidized, whereas the benzothiophene was almost totally removed in oxidized sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.