945 resultados para ORTHOPHOSPHATE NANOWIRES
Resumo:
Isolated magnetic nanowires have been studied extensively and the magnetization reversal mechanism is well understood in these systems. But when these nanowires are joined together in different architectures, they behave differently and can give novel properties. Using this approach, one can engineer the network architectures to get artificial anisotropy. Here, we report six-fold anisotropy by joining the magnetic nanowires into hexagonal network. For this study, we also benchmark the widely used micromagnetic packages: OOMMF, Nmag, and LLG-simulator. Further, we propose a local hysteresis method by post processing the spatial magnetization information. With this approach we obtained the hysteresis of nanowires to understand the six-fold anisotropy and the reversal mechanism within the hexagonal networks.
Resumo:
Organic acids are important constituents of fruit juices. They render tartness, flavour and specific taste to fruit juices. Shelf life and stability of fruit juices are important factors, which determine their nutritional quality and freshness. In this view, the effect of storage on the concentration of organic acids in commercially packed fruit juices is studied by reverse phase high performance liquid chromatography (RP-HPLC). Ten packed fruit juices from two different brands are stored at 30 C for 24, 48 and 72 hours. A reverse phase high performance liquid chromatographic method is used to determine the concentration of oxalic, tartaric, malic, ascorbic and citric acid in the fruit juices during storage. The chromatographic analysis of organic acids is carried out using mobile phase 0.5% (w/v) ammonium dihydrogen orthophosphate buffer (pH 2.8) on C18 column with UV-Vis detector. The results show that the concentration of organic acids generally decreases in juices under study with the increase in storage time. All the fruit juices belonging to tropicana brand underwent less organic acid degradation in comparison to juices of real brand. Orange fruit juice is found to be least stable among the juices under study, after the span of 72 hours. Amongst all the organic acids under investigation minimum stability is shown by ascorbic acid followed by malic and citric acid.
Resumo:
Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 mu m length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.
Resumo:
The present study is focussed at establishing an appropriate electrolyte system for developing electrochemically stable and fluorine (F) containing titania (F-TiO2) films on Cp Ti by micro-arc oxidation (MAO) technique. To fabricate the F-TiO2 films on Cp Ti, different electrolyte solutions of chosen concentrations of tri-sodium orthophosphate (TSOP, Na3PO4 center dot I2H2O), potassium hydroxide (KOH) and various F-containing compounds such as ammonium fluoride (NH4F), potassium fluoride (KF), sodium fluoride (NaF) and potassium fluorotitanate (K2TiF6) are employed. The structural and morphological characteristics, thickness and elemental composition of the developed films have been assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The in-vitro electrochemical corrosion behavior of the films was studied under Kokubo simulated body fluid (SBF) environment by potentiodynamic polarization, long term potential measurement and electrochemical impedance spectroscopy (EIS) methods. The XRD and SEM-EDS results show that the rutile content in the films vary in the range of 15-37 wt% and the F and P contents in the films is found to be in the range of 2-3 at% and 2.9-4.7 at% respectively, suggesting that the anatase to rutile phase transformation and the incorporation of F and P into the films are significantly controlled by the respective electrolyte solution. The SEM elemental mapping results show that the electrolyte borne F and P elements are incorporated and distributed uniformly in all the films. Among all the films under study, the film developed with 5 g TSOP+2 g KOH+3 g K2TiF6 electrolyte system exhibits considerably improved in-vitro corrosion resistance and therefore best suited for biomedical applications. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this paper, we report a novel piezoelectric ZnO nanogenerator on flexible metal alloy substrate (Phynox alloy) for energy harvesting and sensing applications. The vertically aligned ZnO nanowires are sandwiched between Au electrodes. The aligned growth of ZnO nanowires have been successfully synthesized on Au coated metal alloy substrate by hydrothermal method at low temperature (95 +/- 1 degrees C). The as-synthesized vertically aligned ZnO nanowires were characterized using FE-SEM. Further, PMMA is spin coated over the aligned ZnO nanowires for the purpose of their long term stability. The fabricated nanogenerator is of size 30mm x 6mm. From energy harvesting point of view, the response of the nanogenerator due to finger tip impacts ranges from 0.9 V to 1.4V. Also for sensing application, the maximum output voltage response of the nanogenerator is found to be 2.86V due to stainless steel (SS) ball impact and 0.92 V due to plastic ball impact.
Resumo:
Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.
Resumo:
Capping-free and linker-free nanostructures/hybrids possess superior properties due to the presence of pristine surfaces and interfaces. In this review, various methods for synthesizing pristine nanomaterials are presented along with the general principles involved in their morphology control. In wet chemical synthesis, the interplay between various reaction parameters results in diverse morphology. The fundamental principles behind the evolution of morphology including nanoporous aggregates of metals and other inorganic materials, 2D nanocrystals of metals is elucidated by capping-free methods in aqueous medium. In addition, strategies leading to the attachment of bare noble metal nanoparticles to functional oxide supports/reduced graphene oxide has been demonstrated which can serve as a simple solution for obtaining thermally stable and efficient supported catalysts with free surfaces. Solution based synthesis of linker-free oxide-semiconductor hybrids and capping-free metal nanowires on substrates are also discussed in this context with ZnO/CdS and ultrathin Au nanowires as examples. A simple and rapid microwave-assisted method is highlighted for obtaining such hybrids which can be employed for high-yield production of similar materials.
Resumo:
We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as p-type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current p-type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.
Resumo:
Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.
Resumo:
The magnetic properties of carbon nanotube encapsulated nickel nanowires (C. E. nanowires of diameter similar to 10 nm), and its comparison to other forms of Ni are carried out in this work. The saturation magnetization (M-s) and coercivity (H-c) for C. E. nanowires are 1.0 emu/g and 230 Oe. The temperature dependence of coercivity follows T-0.77 dependence indicating a superparamagnetic behavior. The field-cooled and zero-field-cooled plots indicate that the blocking temperature (T-B) similar to 300 K. These altered magnetic properties of C. E. nanowires are mainly due to the nanoscale confinement effect from carbon nanotube encapsulation. The shape and magnetic environment enhance the total magnetic anisotropy of C. E. nanowires by a factor of four.
Resumo:
Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We report the synthesis of branched ZnO nanostructures by vapour phase transport and their multistage effect in enhancing the field emission behaviour. First, the ZnO nanowires (first generation) are grown and second generation nanowires are grown on first one and so on to obtain the branched structures. The number of branches increases and the diameter of the branches decreases till the third generation nanowires. Fourth generation onwards, dense branched structures are obtained eventually yielding nanoforest-like morphology. The field emission behaviour is found to improve till the third generation and is assigned to smaller diameter of the branches. (C) 2014 AIP Publishing LLC.
Resumo:
Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.
Resumo:
Oxidation of small organic molecules in a fuel cell is a viable method for energy production. However, the key issue is the development of suitable catalysts that exhibit high efficiencies and remain stable during operation. Here, we demonstrate that amine-modified ZnO nanorods on which ultrathin Au nanowires are grown act as an excellent catalyst for the oxidation of ethanol. We show that the modification of the ZnO nanorods with oleylamine not only modifies the electronic structure favorably but also serves to anchor the Au nanowires on the nanorods. The adsorption of OH- species on the Au nanowires that is essential for ethanol oxidation is facilitated at much lower potentials as compared to bare Au nanowires leading to high activity. While ZnO shows negligible electrocatalytic activity under normal conditions, there is significant enhancement in the activity under light irradiation. We demonstrate a synergistic enhancement in the photoelectrocatalytic activity of the ZnO/Au nanowire hybrid and provide mechanistic explanation for this enhancement based on both electronic as well as geometric effects. The principles developed are applicable for tuning the properties of other metal/semiconductor hybrids with potentially interesting applications beyond the fuel cell application demonstrated here.