1000 resultados para OPAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on sedimentological and geochemical data, the Upper Cretaceous and Tertiary sequence at Ocean Drilling Program Site 661 was subdivided into four intervals: Interval I (Campanian age) is characterized by sediments deposited below the calcite compensation depth (CCD) inside a high-productivity area and well-oxygenated bottom waters, indicated by the absence of carbonate, the major occurrence of zeolites and opal-CT, and intense bioturbation. Very fine-grained siliciclastic sediments and the lack of any erosional features suggest a low-energy environment. The terrigenous fraction was probably supplied by winds from the nontropical areas in South Africa. Interval II (Maestrichtian age) is characterized by high-amplitude variations in the carbonate content indicative of a deposition above the CCD, superimposed by (climate-controlled) short-term fluctuations of the CCD. The absence of both zeolites and opal-CT imply a position of Site 661 outside high-productivity areas. The first occurrence of higher amounts of kaolinite (especially during the middle Maestrichtian) suggests the onset of a terrigenous sediment supply from tropical areas. Interval III (between uppermost Cretaceous to early Tertiary) is characterized by the absence of carbonate and zeolites, interpreted as deposition below the CCD and outside an oceanic high-productivity belt. The kaolinite-over-illite dominance suggests a terrigenous sediment supply from tropical areas. Interval IV (between early Tertiary and Miocene age) is characterized by the occurrence of black manganeserich layers, major nodules/pebbles, and erosional surfaces, indicating phases of extremely reduced sediment accumulation and bottom-current activities. In the lower part of this interval (?Eocene age), higher amounts of zeolites occur, which suggest a higher oceanic productivity caused by equatorial upwelling. The source area of the terrigenous sediment fraction at Site 661 was the tropical region of northwest Africa, as suggested by the kaolinite-over-illite dominance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ODP Site 1237 and sediment core RRV9702a-69PC were investigated for siliciclastic grain-size distributions and changes in geochemical composition to reconstruct southeast trade-wind variability during the past 5 Ma. Because both, working and archive halves of all ODP Site 1237 cores were completely depleted between 3.3 and 8.1 meters composite depths, (mcd), the corresponding sections of pre-site survey core RRV9702A-69PC were sampled and investigated to fill the gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To increase our understanding of the mechanisms that control the distribution of Al and Ti within marine sediment, we performed sequential extractions targeting the chemical signatures of the loosely bound, exchangeable, carbonate, oxide, organic, opal, and residual fraction of sediment from a carbonate-dominated regime (equatorial Pacific) and from a mixed opal-terrigenous regime (West Antarctic Peninsula). We observe a systematic partitioning of Al and Ti between sediment phases that is related to bulk Al/Ti. We show that, where we can quantify an Al(excess) component, the dissolved Al is preferentially affiliated with the oxide fraction, resulting in Al/Ti molar ratios of 500-3000. This is interpreted as the result of surface complexation in the water column of dissolved Al onto oxyhydroxides. We also observe a previously undetected Ti(excess) with as much as 80% of the total Ti in the organic fraction, which is most likely a function of metal-organic colloidal removal from the water column. In samples where the excess metals are obscured by the detrital load, the Al and Ti are almost exclusively found in the residual phase. This argues for the paired removal of Al (preferentially by the oxide component) and Ti (preferentially by the organic component) from the water column by settling particulate matter. This research builds upon earlier work that shows changes in the bulk ratio of Al to Ti in carbonate sediment from the central-equatorial Pacific that coincide with changes in the sedimentary bulk accumulation rate (BAR). The ratios that are observed are as much as three times higher than typical shale values, and were interpreted as the result of scavenging of dissolved Al onto particles settling in the water column. Because this non-terrigenous Al(excess) accounts for up to 50% of the total sedimentary Al inventory and correlates best with BAR, the bulk Al/Ti may be a sensitive tracer of particle flux and, therefore, export production. Because we show that the excess metals are the result of scavenging processes, the bulk Al/Ti may be considered a sensitive proxy for this region.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment composition and rate of deposition are the primary factors responsible for determining the spatial distribution of geotechnical properties on the Wring Plateau. Grain size and depth of burial have no significant influence. Vertical and lateral changes in geotechnical properties are associated with vertical and lateral composition changes in which biogenic silica is the most important variable. Anomalous trends of decreasing density and increasing porosity and water content with depth are associated with increasing silica content downsection. Void ratios, inferred in-situ permeability, and change in void ratio during consolidation testing are relatively high in siliceous sediments and tend to increase as the biogenic silica content increases. Portions of the section are overconsolidated, probably as a result of changes in sediment accumulation rates. However, the higher permeabilities of siliceous sediments may also be a factor influencing consolidation state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time deep-sea mooring stations with sediment traps were deployed in the northeast Black Sea. One sediment trap for long-term studies was located at Station 1 (44°15'N, 37°43'E, deployment depth 1800 m, depth 1900 m). The trap collected sinking sedimentary material from January to May 1998. Material collectors were changed every 15 days. Other stations with sediment traps for short-term studies (September-October 1999) were located on the shelf: Station 2 (44°16'N, 38°37'E, deployment depth 45 m, depth 50 m) and on the bottom of the canyon: Station 3 (44°16'N, 38°22'E, deployment depth 1145 m, depth 1150 m), Station 4 (44°11'N, 38°21'E, deployment depths 200, 1550, 1650 m, depth 1670 m). Collected material indicates that vertical particle fluxes are controlled by seasonal changes of in situ production and by dynamics of terrigenous matter input. Higher vertical particle flux of carbonate and biogenic silica was in spring due to bloom of plankton organisms. Maximum of coccolith bloom is in April-May. Bloom of diatoms begins in March. In winter and autumn lithogenic material dominates in total flux. Its amount strongly depends on storms and river run-off. Suspended particle material differs from surface shelf sediments by finer particles (mainly clay fraction) and high content of clay minerals and biogenic silica. This material may form lateral fluxes with higher concentration of particles transported along the bottom of deep-sea canyons from the shelf to the deep basin within the nepheloid layer. In winter such transportation of sedimentary material is more intensive due to active vertical circulation of water masses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Downhole temperature and thermal conductivity measurements in core samples recovered during Legs 127 and 128 in the Japan Sea resulted in five accurate determinations of heat flow through the seafloor and accurate estimates of temperature vs. depth over the drilled sections. The heat flows measured at these sites are in excellent agreement with nearby seafloor measurements. Drilling sampled basaltic rocks that form the acoustic basement in the Yamato and Japan basins and provided biostratigraphic and isotopic estimates of the age of these basins. The preliminary age estimates are compared with predicted heat flow values for two different thermal models of the lithosphere. A heat flow determination from the crest of the Okushiri Ridge yielded an anomalously high heat flow of 156 mW/m**2. This excessive heat flow value may have resulted from frictional heating on an active reverse fault that bounds the eastern side of the Ridge. Accurate estimates of sedimentation rates and temperatures in the sedimentary section combined with models of basin formation provide an opportunity to test thermochemical models of silica diagenesis. The current location of the opal-A/opal CT transition in the sedimentary section is determined primarily by the thermal history of the layer in which the transition is now found. Comparison of the ages and temperatures of the layer where the opal-A/opal-CT is found today is compatible with an activation energy of 14 to 17 kcal/mole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bulk-sediment and clay-fraction X-ray diffraction study of samples from Deep Sea Drilling Project Leg 60 shows an abundance of the following minerals: plagioclase feldspar, zeolite, smectite, Fe-Mg chlorite, attapulgite, and serpentine. Amorphous compounds are also abundant. The variations in abundance of the different components correspond to episodes of volcanic activity through time. Deposits from periods of great activity are composed of sediments very rich in amorphous matter and in "primary" minerals (e.g., plagioclase feldspars). During relatively quiet periods, clay minerals and zeolites predominate.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.