867 resultados para Nonparametric discriminant analysis
Resumo:
Although considerable effort has been invested in the measurement of banking efficiency using Data Envelopment Analysis, hardly any empirical research has focused on comparison of banks in Gulf States Countries This paper employs data on Gulf States banking sector for the period 2000-2002 to develop efficiency scores and rankings for both Islamic and conventional banks. We then investigate the productivity change using Malmquist Index and decompose the productivity into technical change and efficiency change. Further, hypothesis testing and statistical precision in the context of nonparametric efficiency and productivity measurement have been used. Specially, cross-country analysis of efficiency and comparisons of efficiencies between Islamic banks and conventional banks have been investigated using Mann-Whitney test.
Resumo:
Since its introduction in 1978, data envelopment analysis (DEA) has become one of the preeminent nonparametric methods for measuring efficiency and productivity of decision making units (DMUs). Charnes et al. (1978) provided the original DEA constant returns to scale (CRS) model, later extended to variable returns to scale (VRS) by Banker et al. (1984). These ‘standard’ models are known by the acronyms CCR and BCC, respectively, and are now employed routinely in areas that range from assessment of public sectors, such as hospitals and health care systems, schools, and universities, to private sectors, such as banks and financial institutions (Emrouznejad et al. 2008; Emrouznejad and De Witte 2010). The main objective of this volume is to publish original studies that are beyond the two standard CCR and BCC models with both theoretical and practical applications using advanced models in DEA.
Resumo:
This paper explains some drawbacks on previous approaches for detecting influential observations in deterministic nonparametric data envelopment analysis models as developed by Yang et al. (Annals of Operations Research 173:89-103, 2010). For example efficiency scores and relative entropies obtained in this model are unimportant to outlier detection and the empirical distribution of all estimated relative entropies is not a Monte-Carlo approximation. In this paper we developed a new method to detect whether a specific DMU is truly influential and a statistical test has been applied to determine the significance level. An application for measuring efficiency of hospitals is used to show the superiority of this method that leads to significant advancements in outlier detection. © 2014 Springer Science+Business Media New York.
Resumo:
This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
Resumo:
In the nonparametric framework of Data Envelopment Analysis the statistical properties of its estimators have been investigated and only asymptotic results are available. For DEA estimators results of practical use have been proved only for the case of one input and one output. However, in the real world problems the production process is usually well described by many variables. In this paper a machine learning approach to variable aggregation based on Canonical Correlation Analysis is presented. This approach is applied for efficiency estimation of all the farms in Terceira Island of the Azorean archipelago.
Resumo:
2000 Mathematics Subject Classification: 62G08, 62P30.
Resumo:
Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^
Resumo:
The known moss flora of Terra Nova National Park, eastern Newfoundland, comp~ises 210 species. Eighty-two percent of the moss species occurring in Terra Nova are widespread or widespread-sporadic in Newfoundland. Other Newfoundland distributional elements present in the Terra Nova moss flora are the northwestern, southern, southeastern, and disjunct elements, but four of the mosses occurring in Terra Nova appear to belong to a previously unrecognized northeastern element of the Newfoundland flora. The majority (70.9%) of Terra Nova's mosses are of boreal affinity and are widely distributed in the North American coniferous forest belt. An additional 10.5 percent of the Terra Nova mosses are cosmopolitan while 9.5 percent are temperate and 4.8 percent are arctic-montane species. The remaining 4.3 percent of the mosses are of montane affinity, and disjunct between eastern and western North America. In Terra Nova, temperate species at their northern limit are concentrated in balsam fir stands, while arctic-montane species are restricted to exposed cliffs, scree slopes, and coastal exposures. Montane species are largely confined to exposed or freshwater habitats. Inability to tolerate high summer temperatures limits the distributions of both arctic-montane and montane species. In Terra Nova, species of differing phytogeographic affinities co-occur on cliffs and scree slopes. The microhabitat relationships of five selected species from such habitats were evaluated by Discriminant Functions Analysis and Multiple Regression Analysis. The five mosses have distinct and different microhabitats on cliffs and scree slopes in Terra Nova, and abundance of all but one is associated with variation in at least one microhabitat variable. Micro-distribution of Grimmia torquata, an arctic-montane species at its southern limit, appears to be deterJ]lined by sensitivity to high summer temperatures. Both southern mosses at their northern limit (Aulacomnium androgynum, Isothecium myosuroides) appear to be limited by water availability and, possibly, by low winter temperatures. The two species whose distributions extend both north and south or the study area (Encalypta procera, Eurhynchium pulchellum) show no clear relationship with microclimate. Dispersal factors have played a significant role in the development of the Terra Nova moss flora. Compared to the most likely colonizing source (i .e. the rest of the island of Newfoundland), species with small diaspores have colonized the study area to a proportionately much greater extent than have species with large diaspores. Hierarchical log-linear analysis indicates that this is so for all affinity groups present in Terra Nova. The apparent dispersal effects emphasize the comparatively recent glaciation of the area, and may also have been enhanced by anthropogenic influences. The restriction of some species to specific habitats, or to narrowly defined microhabitats, appears to strengthen selection for easily dispersed taxa.
Resumo:
Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.
Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.
Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with
little or no prior knowledge
Resumo:
Dynamic positron emission tomography (PET) imaging can be used to track the distribution of injected radio-labelled molecules over time in vivo. This is a powerful technique, which provides researchers and clinicians the opportunity to study the status of healthy and pathological tissue by examining how it processes substances of interest. Widely used tracers include 18F-uorodeoxyglucose, an analog of glucose, which is used as the radiotracer in over ninety percent of PET scans. This radiotracer provides a way of quantifying the distribution of glucose utilisation in vivo. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue function. As the residue represents the amount of tracer remaining in the tissue, this can be thought of as a survival function; these functions been examined in great detail by the statistics community. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as ow, ux and volume of distribution. This thesis presents a Markov chain formulation of blood tissue exchange and explores how this relates to established compartmental forms. A nonparametric approach to the estimation of the residue is examined and the improvement in this model relative to compartmental model is evaluated using simulations and cross-validation techniques. The reference distribution of the test statistics, generated in comparing the models, is also studied. We explore these models further with simulated studies and an FDG-PET dataset from subjects with gliomas, which has previously been analysed with compartmental modelling. We also consider the performance of a recently proposed mixture modelling technique in this study.
Resumo:
In recent papers, Wied and his coauthors have introduced change-point procedures to detect and estimate structural breaks in the correlation between time series. To prove the asymptotic distribution of the test statistic and stopping time as well as the change-point estimation rate, they use an extended functional Delta method and assume nearly constant expectations and variances of the time series. In this thesis, we allow asymptotically infinitely many structural breaks in the means and variances of the time series. For this setting, we present test statistics and stopping times which are used to determine whether or not the correlation between two time series is and stays constant, respectively. Additionally, we consider estimates for change-points in the correlations. The employed nonparametric statistics depend on the means and variances. These (nuisance) parameters are replaced by estimates in the course of this thesis. We avoid assuming a fixed form of these estimates but rather we use "blackbox" estimates, i.e. we derive results under assumptions that these estimates fulfill. These results are supplement with examples. This thesis is organized in seven sections. In Section 1, we motivate the issue and present the mathematical model. In Section 2, we consider a posteriori and sequential testing procedures, and investigate convergence rates for change-point estimation, always assuming that the means and the variances of the time series are known. In the following sections, the assumptions of known means and variances are relaxed. In Section 3, we present the assumptions for the mean and variance estimates that we will use for the mean in Section 4, for the variance in Section 5, and for both parameters in Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors of some testing procedures and estimates.
Resumo:
We present an IP-based nonparametric (revealed preference) testing procedure for rational consumption behavior in terms of general collective models, which include consumption externalities and public consumption. An empirical application to data drawn from the Russia Longitudinal Monitoring Survey (RLMS) demonstrates the practical usefulness of the procedure. Finally, we present extensions of the testing procedure to evaluate the goodness-of- t of the collective model subject to testing, and to quantify and improve the power of the corresponding collective rationality tests.
Resumo:
Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.
Resumo:
Aim: To analyze the root canal organic tissue dissolution capacity promoted by irrigating solutions, with or without the use of different agitation techniques. Methods: Bovine pulp tissue fragments were initially weighed. The following irrigating solutions were tested: 2.5% sodium hypochlorite, 2% chlorhexidine digluconate solution, and distilled water. The irrigating protocols were: immersion, mechanical agitation with endodontic files, and ultrasonic or sonic systems (Endoactivactor® and Easy Clean®). At the end of the protocols, the pulps were weighed to determine their final weight. For comparison, the average percentage of tissue dissolution in relation to the groups was analyzed using the Kruskal-Wallis nonparametric test complemented by multiple comparisons test. The significance level was set at 5%. Results: Among the irrigation solutions, 2.5% sodium hypochlorite showed a higher dissolving power than 2% chlorhexidine digluconate and distilled water. Furthermore, ultrasonic and sonic systems were more effective irrigating protocols than immersion and mechanical agitation with endodontic files. Conclusions: The combination of sodium hypochlorite with an agitation system promotes a greater degree of tissue degradation.
Resumo:
2016