937 resultados para Non nutrient and non toxic dietary components


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Widespread occurrence of pharmaceuticals residues has been reported in aquatic ecosystems. However, their toxic effects on aquatic biota remain unclear. Generally, the acute toxicity has been assessed in laboratory experiments, while chronic toxicity studies have rarely been performed. Of importance appears also the assessment of mixture effects, since pharmaceuticals never occur in waters alone. The aim of the present work is to evaluate acute and chronic toxic response in the crustacean Daphnia magna exposed to single pharmaceuticals and mixtures. We tested fluoxetine, a SSRI widely prescribed as antidepressant, and propranolol, a non selective β-adrenergic receptor-blocking agent used to treat hypertension. Acute immobilization and chronic reproduction tests were performed according to OECD guidelines 202 and 211, respectively. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design with concentrations based on Toxic Units. The conceptual model of Concentration Addition was adopted in this study, as we assumed that the mixture effect mirrors the sum of the single substances for compounds having similar mode of action. The MixTox statistical method was applied to analyze the experimental results. Results showed a significant deviation from CA model that indicated antagonism between chemicals in both the acute and the chronic mixture tests. The study was integrated assessing the effects of fluoxetine on a battery of biomarkers. We wanted to evaluate the organism biological vulnerability caused by low concentrations of pharmaceutical occurring in the aquatic environment. We assessed the acetylcholinesterase and glutathione s-transferase enzymatic activities and the malondialdehyde production. No treatment induced significant alteration of biomarkers with respect to the control. Biological assays and the MixTox model application proved to be useful tools for pharmaceutical risk assessment. Although promising, the application of biomarkers in Daphnia magna needs further elucidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research project focuses its attention on the study of structure-property relations in polymers from renewable sources (bio-based polymers) such as polymers microbially produced, i.e. polyhydrohyalkanoates (PHAs) or chemically synthesized using monomers from renewable sources, i.e. polyammide 11 (PA11). By means of a broad spectrum of experimental techniques, the influence of different modifications on bio-based polymers such as blending with other components, copolymerization with different co-monomers and introduction of branching to yield complex architectures have been investigated. The present work on PHAs focused on the study of the dependence of polymer properties on both the fermentation process conditions (e.g. bacterial strain and carbon substrate used) and the method adopted to recover PHAs from cells. Furthermore, a solvent-free method using an enzyme and chemicals in an aqueous medium, was developed in order to recover PHAs from cells. Such a method allowed to recover PHA granules in their amorphous state, i.e. in native form useful for specific applications (e.g. paper coating). In addition, a commercial PHA was used as polymeric matrix to develop biodegradable and bio-based composites for food packaging applications. Biodegradable, non-toxic, food contact plasticizers and low cost, widely available lignocellulosic fibers (wheat straw fibers) were incorporated in such a polymeric matrix, in order to decrease PHA brittleness and the polymer cost, respectively. As concerns the study of polyamide 11, both the rheological and the solid-state behavior of PA11 star samples with different arm number and length was studied. Introduction of arms in a polymer molecule allows to modulate melt viscosity behavior which is advantageous for industrial applications. Also, several important solid-state properties, in particular mechanical properties, are affected by the presence of branching. Given the importance of using ‘green’ synthetic strategies in polymer chemistry, novel poly(-amino esters), synthesized via enzymatic-catalyzed polymerization, have also been investigated in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanopartikuläre Wirkstofftransportsysteme besitzen ein großes Potential für therapeutische Anwendungen. In der vorliegenden Arbeit wurden verschiedene grundlegende Aspekte, die für das erweiterte biologische Verständnis und die Entwicklung weiterer zielgerichteter Strategien zur Pharmakotherapie mit Nanopartikeln und –kapseln notwendig sind, näher untersucht. Experimente zur zellulären Aufnahmefähigkeit (in vitro und ex vivo) wurden mit verschiedenen Nanopartikeln und –kapseln aus diversen Monomeren und biokompatiblen Makromolekülen in immortalisierten Zellkulturlinien, humanen mesenchymalen Stammzellen und Leukozyten durchgeführt und durchflusszytometrisch sowie mittels konfokaler Laser-Raster-Mikroskopie analysiert. Die Einflüsse der Oberflächenfunktionalisierungen der nanopartikulären Systeme, deren toxikologische Effekte sowie der Einfluss von adsorbiertem bovinem Serumalbumin auf funktionalisierten Polystyrol-Nanopartikeln wurden in Bezug auf die zelluläre Aufnahme untersucht.Um die multiplen Wechselwirkungen der Nanopartikel mit Bestandteilen des humanen peripheren Vollblutes zu untersuchen, wurde erfolgreich ein durchflusszytometrisches Analyseverfahren in antikoaguliertem peripherem Vollblut (ex vivo) entwickelt. Es konnte nachgewiesen werden, dass der Einfluss von Calcium-komplexierenden Antikoagulanzien zu einer Verringerung und nicht Li-Heparin zu einer Verstärkung der zellulären Aufnahme von funktionalisierten Polystyrol-Nanopartikeln in diversen Leukozyten führt.Für Folsäure-gekoppelte Hydroxyethylstärke-Nanokapseln (Synthese Frau Dr. Grit Baier) konnte ein größenabhängiger selektiver, Folatrezeptor α vermittelter, zellulärer Aufnahmeweg in HeLa-Zellen nachgewiesen werden.Hydrolysierbare, nicht zytotoxische Polyester-Nanopartikel aus Poly(5,6-Benzo-2-methylen-1,3-dioxepan) (Synthese Herr Dr. Jörg Max Siebert) mit eingebettetem Paclitaxel zeigten in HeLa-Zellen eine vergleichbare pharmakologische Wirkung wie kommerziell erhältliche Paclitaxel-Formulierungen.Die in dieser Arbeit eingesetzten Nanopartikel und Nanokapseln besitzen ein vielfältiges Potential als Wirkstofftransportsysteme. Es zeigte sich, dass Unterschiede bei der Größe, der Größenverteilung, des Polymers sowie der Oberflächenfunktionalisierung der Nanopartikel bedeutende Unterschiede der Zellaufnahme in diversen Zellkulturlinien (in vitro) und Leukozyten in peripherem Vollblut (ex vivo) zur Folge haben.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il microbiota intestinale riveste un ruolo importantissimo nell’influenzare la salute dell’ospite. È stato dimostrato come la composizione della dieta possa condizionare lo stato di benessere dell’animale, inducendo importanti cambiamenti tra le popolazioni batteriche che coabitano l’intestino; l’uso di prebiotici rappresenta una delle strategie maggiormente impiegate per modulare positivamente la composizione ed il metabolismo dell’ecosistema gastroenterico. Il presente progetto di dottorato si è proposto di indagare gli effetti sul microbiota intestinale del cane e del gatto di diete a diverso tenore proteico e contenenti proteine di diversa digeribilità in presenza o meno di sostanze prebiotiche. Inoltre, sono stati valutati gli effetti della presenza di un estratto di Yucca schidigera e di tannini sulla microflora intestinale del gatto. In ultima istanza, sono state valutate le conseguenze di dosi crescenti di lattosio sul benessere intestinale del cane. I risultati del presente studio hanno rilevato come le sostanze prebiotiche influiscono sulla composizione e sul metabolismo della microflora del cane e del gatto, e come l’impiego di diete ricche di proteine possa avere conseguenze negative sull’ambiente intestinale. Tuttavia, la presenza di oligosaccaridi non sembra contrastare gli effetti negativi che diete ad alto tenore proteico potrebbero avere sull’ecosistema intestinale dell’animale. Nella successiva prova è stato evidenziato come l’inclusione nella dieta di estratti di Yucca e tannini possa contribuire a mitigare l’emanazione di sostanze maleodoranti dalle deiezioni degli animali da compagnia. Nel corso dell’ultima prova, nonostante non siano state osservate differenze tra le popolazioni microbiche intestinali, la somministrazione di dosi crescenti di lattosio ha indotto una certa riduzione delle fermentazioni proteolitiche microbiche. Ulteriori studi sono necessari per stabilire in che misura la dieta e gli alimenti “funzionali” possano influire sul microbiota intestinale del cane e del gatto e come queste informazioni possono essere utilizzate per migliorare miratamente l’alimentazione e lo stato di salute degli animali da compagnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Antibody-based cancer therapies have been successfully introduced into the clinic and have emerged as the most promising therapeutics in oncology. The limiting factor regarding the development of therapeutical antibody vaccines is the identification of tumor-associated antigens. PLAC1, the placenta-specific protein 1, was categorized for the first time by the group of Prof. Sahin as such a tumor-specific antigen. Within this work PLAC1 was characterized using a variety of biochemical methods. The protein expression profile, the cellular localization, the conformational state and especially the interacting partners of PLAC1 and its functionality in cancer were analyzed. Analysis of the protein expression profile of PLAC1 in normal human tissue confirms the published RT-PCR data. Except for placenta no PLAC1 expression was detectable in any other normal human tissue. Beyond, an increased PLAC1 expression was detected in several cancer cell lines derived of trophoblastic, breast and pancreatic lineage emphasizing its properties as tumor-specific antigen. rnThe cellular localization of PLAC1 revealed that PLAC1 contains a functional signal peptide which conducts the propeptide to the endoplasmic reticulum (ER) and results in the secretion of PLAC1 by the secretory pathway. Although PLAC1 did not exhibit a distinct transmembrane domain, no unbound protein was detectable in the cell culture supernatant of overexpressing cells. But by selective isolation of different cellular compartments PLAC1 was clearly enriched within the membrane fraction. Using size exclusion chromatography PLAC1 was characterized as a highly aggregating protein that forms a network of high molecular multimers, consisting of a mixture of non-covalent as well as covalent interactions. Those interactions were formed by PLAC1 with itself and probably other cellular components and proteins. Consequently, PLAC1 localize outside the cell, where it is associated to the membrane forming a stable extracellular coat-like structure.rnThe first mechanistic hint how PLAC1 promote cancer cell proliferation was achieved identifying the fibroblast growth factor FGF7 as a specific interacting partner of PLAC1. Moreover, it was clearly shown that PLAC1 as well as FGF7 bind to heparin, a glycosaminoglycan of the ECM that is also involved in FGF-signaling. The participation of PLAC1 within this pathway was approved after co-localizing PLAC1, FGF7 and the FGF7 specific receptor (FGFR2IIIb) and identifying the formation of a trimeric complex (PLAC1, FGF7 and the specific receptor FGFR2IIIb). Especially this trimeric complex revealed the role of PLAC1. Binding of PLAC1 together with FGF7 leads to the activation of the intracellular tyrosine kinase of the FGFR2IIIb-receptor and mediate the direct phosphorylation of the AKT-kinase. In the absence of PLAC1, no FGF7 mediated phosphorylation of AKT was observed. Consequently the function of PLAC1 was clarified: PLAC1 acts as a co-factor by stimulating proliferation by of the FGF7-FGFR2 signaling pathway.rnAll together, these novel biochemical findings underline that the placenta specific protein PLAC1 could be a new target for cancer immunotherapy, especially considering its potential applicability for antibody therapy in tumor patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in the activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. Pentraxins are essential constituents of the humoral arm of innate immunity and represent a superfamily of highly conserved acute phase proteins, traditionally classified into short and long pentraxins. Pentraxin 3 (PTX3) is the prototypic member of the long pentraxins subfamily. As opposed to C-reactive protein, whose sequence and regulation have not been conserved during evolution from mouse to man, the evolutionary conservation of sequence, gene organization and regulation of PTX3 has allowed addressing its pathophysiological roles in genetically modified mice, in diverse conditions, ranging from infections to sterile inflammation, angiogenesis and female fertility. Despite this conservation, a number of predominantly non-coding polymorphisms have been identified in the PTX3 gene which, when associated in particular haplotypes, have been shown to be relevant in clinical conditions including infection and fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition, tissue remodelling and crosstalk with other components of the innate immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gastrointestinal tract of neonatal calves is relatively mature but still requires morphological and functional changes. The intake of colostrum with its nutrient and non-nutrient components exerts marked effects on gastrointestinal development and function. Colostrum intake provides immunoprotection (passive immunity by immunoglobulins) and is essential for survival of neonates of most species. Furthermore, there are important transient as well as long-lasting systemic effects on the nutritional status, on metabolism, and on various endocrine systems due to intake of nutrient and non-nutrient colostral components that contribute to survival in the stressful postnatal period. Colostrum is much more than just a supplier of immunoglobulins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Potentized antimony is traditionally used in anthroposophic medicine to enhance hemostasis in bleeding disorders, but evidence of its effectiveness is scarce. On the other hand, non-toxic and economic additional therapeutic options for hemostatic disorders are desirable. OBJECTIVES: We examined all available literature on the subject and performed a controlled pilot in vitro study to test the procoagulatory potency of antimony D 5. DESIGN: Freshly drawn citrated whole blood of 12 healthy volunteers and 12 patients with bleeding disorders was equally distributed into 344 portions, after which it was mixed with antimony D 5, or its potentized vehicle (lactose D 5) as control solution and tested with thrombelastography. The paired t-test and the Wilcoxon signed rank test were used for statistical analysis. In 5 of the 12 healthy donors, a second blood sample was drawn to assess individual variability and increase the total number of replicates. Thus three separate calculations were performed: for the 12 patients, the 12 healthy donors, and the 5 later samples from the same donors. The analysis was exploratory, and no Bonferroni correction was applied. RESULTS: In the antimony D5 samples of the 12 healthy subjects, but not the patients, there was a tendency toward a shorter clotting time (CT) (p = 0.074) and a trend for an increased clot firmness, expressed as maximal amplitude (MA) (p = 0.058). The increase of MA was significant (p = 0.011) when the later samples were included. No statistical difference was detected for the clot formation time and the clot lysis index. CONCLUSION: The exploratory results of this pilot study are inconclusive as to whether antimony D5 has a procoagulatory effect in vitro, although the results suggest an effect on MA and possibly CT. More research is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.