995 resultados para Multiphase Turbulent Flow
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted Glycosyl Phosphatidyl Inositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi.
Resumo:
Microbial adhesion is a field of recognized relevance and, as such, an impressive array of tools has been developed to understand its molecular mechanisms and ultimately for its quantification. Some of the major limitations found within these methodologies concern the incubation time, the small number of cells analyzed, and the operator's subjectivity. To overcome these aspects, we have developed a quantitative method to measure yeast cells' adhesion through flow cytometry. In this methodology, a suspension of yeast cells is mixed with green fluorescent polystyrene microspheres (uncoated or coated with host proteins). Within 2 h, an adhesion profile is obtained based on two parameters: percentage and cells-microsphere population's distribution pattern. This flow cytometry protocol represents a useful tool to quantify yeast adhesion to different substrata in a large scale, providing manifold data in a speedy and informative manner.
Resumo:
Foi realizado um estudo sobre o efeito do tipo de fluidos na transferência de calor. Pretende-se determinar a influência da concentração da solução de Goma de Xantano, do número de Reynolds, do número de Weissenberg, da temperatura e do tempo de escoamento no coeficiente de transferência de calor, jH. O estudo da transferência de calor foi feito num permutador de tubos duplos concêntricos. Já o estudo da reologia foi realizado num reómetro. Na caracterização reológica das soluções de XG, a viscosidade aumenta com a concentração das soluções, diminui para taxas de deformação crescentes e com o aumento da temperatura para ambas as soluções. Os dados mostram um aumento da intensidade da pseudoplasticidade com a concentração do polímero, sendo os valores representados pelo modelo de Sisco. A degradação da solução de 0,20% de goma de xantano a 25 ºC, com o escoamento, é muito acelerada. Os resultados dos ensaios apresentam uma diminuição da viscosidade de 9,4% a 22,9%, para tempos de escoamento de 12 a 47 horas, respectivamente. Num escoamento turbulento em conduta de secção circular constante os resultados mostram uma redução de arrasto total de 18 para 33%. Para a solução de 0,10 % de XG, verifica-se um aumento do calor transferido de 115% e de 130%, quando a temperatura aumenta de 25 ºC para 36 ºC, respectivamente. A água apresenta valores de calor transferido superiores, cerca de 170%, aos da solução de 0,1 %XG. O factor de correlação empírico de Colbourn (jH), utilizado neste trabalho apresenta valores de acordo com a relação de Cho and Hartnett (1985): jH<2/f. Quando o caudal do fluido quente aumenta verifica-se uma diminuição do factor jH. Em relação ao tempo de escoamento verifica-se uma diminuição de cerca de 70% do coeficiente de transferência de calor ao fim de 47 horas. Finalmente verificamos uma diminuição do factor de transferência de calor com o aumento da temperatura do fluido quente, para ambas as concentrações de goma de xantano. Para as soluções de 0,10 e 0,20% de XG essa diminuição variou entre 38 e 15% e entre 34 e 3%, respectivamente.
Resumo:
In basaltic dykes the magnetic lineation K1 (maximum magnetic susceptibility axis) is generally taken to indicate the flow direction during solidification of the magma. This assumption was tested in Tertiary basaltic dykes from Greenland displaying independent evidence of subhorizontal flow. The digital processing of microphotographs from thin sections cut in (K1, K2) planes yields the preferred linear orientation of plagioclase, which apparently marks the magma flow lineation. In up to 60% of cases, the angular separation between K1 and the assumed flow direction is greater than 45degrees. This suggests that the uncorroborated use of magnetic lineations in dykes is risky. A simple geometrical method is proposed to infer the flow vector from AMS in dykes based solely on magnetic foliations.
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.
Resumo:
A simple, rapid, and precise amperometric method for quantification of N-methylcarbamate pesticides in water samples and phytopharmaceuticals is presented. Carbofuran and fenobucarb are the target analytes. The method is developed in flow conditions providing the anodic oxidation of phenolic-based compounds formed after alkaline hydrolysis. Optimization of instrumental and chemical variables is presented. Under the optimal conditions, the amperometric signal is linear for carbofuran and fenobucarb concentrations over the range of 1.0*10-7 to 1.0*10-5 molL-1, with a detection limit of about 2 ngmL-1. The amperometric method is successfully applied to the analysis of spiked environmental waters and commercial formulations. The proposed method allows 90 samples to be analysed per hour, using 500 mL of sample, and producing wastewaters of low toxicity. The proposed method permits determinations at the mgL 1 level and offers advantages of simplicity, accuracy, precision, and applicability to coloured and turbid samples, and automation feasibility.
Resumo:
New PVC membrane electrodes for the determination of sulfadiazine (SDZ) are presented. The electrodes are fabricated with conventional and tubular configurations with a graphite-based electrical contact, and no internal reference solution. The selective membranes consist of bis(triphenylphosphoranilidene)ammonium·SDZ (electrode A), tetraoctylammonium bromide (electrode B), or iron(II)-phthalocyanine (FePC) (electrode C) electroactive materials dispersed in a PVC matrix of o-nitrophenyl octyl ether (o-NPOE) plasticizer. The sensors A, B, and C displayed linear responses over the concentration ranges 1.0*10-2 – 1.0*10–5, 1.0*10–2 – 7.5*10–6, and 3.2*10–2 – 7.0* 10–6 mol l–1 (detection limits of 1.09, 2.04 and 0.87 mg ml–1) with anionic slopes of –57.3 ± 0.1, –46.7 ± 0.5, and –65.1 ± 0.2 mV decade–1, respectively. No effect from pH was observed within 4.0 – 5.5, 4.8 – 10, and 4.5 – 8, respectively, and good selectivity was found. The sensors were applied to the analysis of pharmaceuticals and biological fluids in steady state and in flow conditions.
Resumo:
New potentiometric membrane sensors with cylindrical configuration for tetracycline (TC) are described based on the use of a newly designed molecularly imprinted polymer (MIP) material consisting of 2-vinylpyridine as a functional monomer in a plasticized PVC membrane. The sensor exhibited significantly enhanced response towards TC over the concentration range 1.59 10 5–1.0 10 3 mol L 1 at pH 3–5 with a lower detection limit of 1.29 10 5 mol L 1. The response was near-Nernstian, with average slopes of 63.9 mV decade 1. The effect of lipophilic salts and various foreign common ions were tested and were found to be negligible. The possibility of applying the proposed sensor to TC determination in spiked biological fluid samples was demonstrated.
Resumo:
The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.
Resumo:
Few analytical methods are currently available for determination of apomorphine, the active substance of a new oral formulation used in the treatment of erectile dysfunction. In this way a flow injection electrochemical method (FIA-EC) was developed for its quantification and applied to pharmaceutical dosage forms. Based in previous findings regarding the stability of apomorphine in borate buffer and after optimization of several analytical parameters a single channel flow injection manifold was set up that enables the determination of this drug over the concentration range of 3 to 16 µmol L-1 with a detection limit of 0.5 µmol L-1 at a sampling rateof 90 h-1. The simplicity and rapidity of the FIA-EC method used, its reproducibility and sensitivity make it suitable for quality control of pharmaceutical preparations of apomorphine intended for clinical use and research.
Resumo:
The knowledge-based society we live in has stressed the importance of human capital and brought talent to the top of most wanted skills, especially to companies who want to succeed in turbulent environments worldwide. In fact, streams, sequences of decisions and resource commitments characterize the day-to-day of multinational companies (MNCs). Such decision-making activities encompass major strategic moves like internationalization and new market entries or diversification and acquisitions. In most companies, these strategic decisions are extensively discussed and debated and are generally framed, formulated, and articulated in specialized language often developed by the best minds in the company. Yet the language used in such deliberations, in detailing and enacting the implementation strategy is usually taken for granted and receives little if any explicit attention (Brannen & Doz, 2012) an can still be a “forgotten factor” (Marschan et al. 1997). Literature on language management and international business refers to lack of awareness of business managers of the impact that language can have not only in communication effectiveness but especially in knowledge transfer and knowledge management in business environments. In the context of MNCs, management is, for many different reasons, more complex and demanding than that of a national company, mainly because of diversity factors inherent to internationalization, namely geographical and cultural spaces, i.e, varied mindsets. Moreover, the way of functioning, and managing language, of the MNC depends on its vision, its values and its internationalization model, i.e on in the way the MNE adapts to and controls the new markets, which can vary essentially from a more ethnocentric to a more pluricentric focus. Regardless of the internationalization model followed by the MNC, communication between different business units is essential to achieve unity in diversity and business sustainability. For the business flow and prosperity, inter-subsidiary, intra-company and company-client (customers, suppliers, governments, municipalities, etc..) communication must work in various directions and levels of the organization. If not well managed, this diversity can be a barrier to global coordination and create turbulent environments, even if a good technological support is available (Feely et al., 2002: 4). According to Marchan-Piekkari (1999) the tongue can be both (i) a barrier, (ii) a facilitator and (iii) a source of power. Moreover, the lack of preparation for the barriers of linguistic diversity can lead to various costs, including negotiations’ failure and failure on internationalization.. On the other hand, communication and language fluency is not just a message transfer procedure, but above all a knowledge transfer process, which requires extra-linguistic skills (persuasion, assertiveness …) in order to promote credibility of both parties. For this reason, MNCs need a common code to communicate and trade information inside and outside the company, which will require one or more strategies, in order to overcome possible barriers and organization distortions.
Resumo:
Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.