882 resultados para Multimodal transport planning and integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de L.L.M. en droit des affaires"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Docteur en Droit (LL.D.) et à la Faculté de Droit et de Sciences Politiques de l'Université de Nantes en vue de l'obtention du grade de Docteur"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planning of the transportation sector in Brazil has long been the railroads as the main engineering system of the country. Thus, it was used to carry, in addition to the physical integration of the national territory, the consolidation of its domestic market. However, after entering in the 1980s, the planning of the sector is left out, and an inversion of the matrix of development is observed, with share gains in monoculture economy and on development of new areas where agricultural expansion advanced. This situation culminated in logistics blackouts in the 1990s and the resumption of sector planning in the early twenty-first century. At this time, it establishes a new institutional apparatus that ensures the participation of private capital in the sector, as well as a new principle for resolving bottlenecks concentrated regions (economically dynamic), from targeting investments to areas of primary economies that only in recent decades have been incorporated into the national economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report some of the changes in production and consumption occurring in the state of São Paulo. through the restructuring in motion systems, logistics and standards and taxation, as well as the impacts on urban spaces through new economic dynamics, imposed by the demands of corporate, is the purpose of this article. The decentralization of production and consumption towards the interior was made possible by the combination of hierarchical and ordered some basic elements such as technological innovations (ways and means of transport) and organizational (logistics, standards and taxation) which optimized the flow territorial state São Paulo. It is noteworthy, therefore: 1) the improvement of logistics as a strategy, planning and management of transport, storage and communications (including the granting of public services to private), 2) the technological improvement and expansion of motion systems (infrastructure, means of transport) and 3) the systems of rules and regulations through taxation and deregulation affect the circulatory system of a given space. Thus, both systems aims to disentangle the economic flows (goods, services, information, capital and people) and provide a more fluid territorial. The impacts on the State of São Paulo, mainly through its economic dynamics, revert positively and negatively, by changing the way one thinks and performs planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present document is to set forth the diagnosis of infrastructure services in Latin America and the Caribbean carried out by the Infrastructure Services Unit of ECLAC. Although much of the diagnosis presented is applicable to all economic infrastructure services, this document places a strong emphasis on transport infrastructure and services, as their characteristics make them a potential constraint on the region’s economic and social development and on its continuing integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like many other Caribbean countries, Grenada, Saint Lucia and Saint Vincent and the Grenadines are almost entirely dependent on imported petroleum as their primary source of energy. In this regard, many countries in the subregion have taken a strategic approach to long-term planning in the energy sector towards creating higher levels of efficiency on both the demand and supply sides as well as promoting diversification in the energy mix. Within this context, this study was conducted to present mechanisms to improve energy efficiency (EE) in the transport sector in Grenada, Saint Lucia and Saint Vincent and the Grenadines. For each country, the report presents a brief description of current trends in energy consumption generally as well as energy issues in the transport sector and programmes, initiatives and regulatory mechanisms currently in place that are contributing to energy efficiency in the sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This FAL Bulletin summarizes the main findings and proposals contained in the document “Políticas de logística y movilidad para el desarrollo sostenible y la integración regional”, recently published by the Natural Resources and Infrastructure Division (NRID), ECLAC. It contains a proposal for a paradigm shift in the formulation of national logistics and mobility policies, with common guidelines for Latin American and Caribbean countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research is to analyze the transport system and its subcomponents in order to highlight which are the design tools for physical and/or organizational projects related to transport supply systems. A characteristic of the transport systems is that the change of their structures can recoil on several entities, groups of entities, which constitute the community. The construction of a new infrastructure can modify both the transport service characteristic for all the user of the entire network; for example, the construction of a transportation infrastructure can change not only the transport service characteristics for the users of the entire network in which it is part of, but also it produces economical, social, and environmental effects. Therefore, the interventions or the improvements choices must be performed using a rational decision making approach. This approach requires that these choices are taken through the quantitative evaluation of the different effects caused by the different intervention plans. This approach becomes even more necessary when the decisions are taken in behalf of the community. Then, in order to understand how to develop a planning process in Transportation I will firstly analyze the transport system and the mathematical models used to describe it: these models provide us significant indicators which can be used to evaluate the effects of possible interventions. In conclusion, I will move on the topics related to the transport planning, analyzing the planning process, and the variables that have to be considered to perform a feasibility analysis or to compare different alternatives. In conclusion I will perform a preliminary analysis of a new transit system which is planned to be developed in New York City.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At global level, the population is increasingly concentrating in the cities. In Europe, around 75% of the population lives in urban areas and, according to the European Environmental Agency (2010), urban population is foreseen to increase up to 80 % by 2020. At the same time, the quality of life in the cities is declining and urban pollution keeps increasing in terms of carbon dioxide (CO2) emissions, waste, noise, and lack of greenery. Many of European cities struggle to cope with social, economic and environmental problems resulting from pressures such as overcrowding or decline, social inequity, health problems related to food security and pollution. Nowadays local authorities try to solve these problems related to the environmental sustainability through various urban logistics measures, which directly and indirectly affect the urban food supply system, thus an integrated approach including freight transport and food provisioning policies issues is needed. This research centres on the urban food transport system and its impact on the city environmental sustainability. The main question that drives the research analysis is "How the urban food distribution system affects the ecological sustainability in modern cities?" The research analyses the city logistics project for food transport implemented in Parma, Italy, by the wholesale produce market. The case study investigates the renewed role of the wholesale market in the urban food supply chain as commercial and logistic operator, referring to the concept of food hub. Then, a preliminary analysis on the urban food transport for the city of Bologna is presented. The research aims at suggesting a methodological framework to estimate the urban food demand, the urban food supply and to assess the urban food transport performance, in order to identify external costs indicators that help policymakers in evaluating the environmental sustainability of different logistics measures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Medicare Catastrophic Coverage Act (MCCA) would have mandated federal assistance for Medicare beneficiaries who have high annual prescription medication costs, High national expenditures for such drugs have encouraged the development of private and state insurance programs to help with these costs. Ten state pharmaceutical assistance programs (SPAPs), designed to help certain elderly, low income, or disabled people, exist for those ineligible for Medicaid or unable to purchase coverage privately. Coordination of state and federal benefits was a consideration for established programs, and programs being planned needed to determine the feasibity of integration of federal assistance. But the enactment and subsequent appeal of the Act affected both planning and policy implications for these SPAPs. All U.S. states and territories were surveyed before the bill's repeal to collect data on the effects of MCCA for those with prescription drug programs and those without. The repeal of the federal program places pressure on the nonprogram states to proceed, perhaps more cautiously, to initiate program; for their own residents, given increasing out-of-pocket and insurance costs, and no federal program.