909 resultados para Mucosal Immunity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. Unfortunately, these vaccines are weakly or non-immunogenic in the absence of an immunological adjuvant (agents that can induce strong immunity to antigens). In addition, in order to prevent and/or control infection at the mucosal surface, stimulation of the mucosal immune system is essential. This may be achieved via the common mucosal immune system by exposure to antigen at a mucosal surface remote from the area of infection. Initial studies investigated the potential of multiple emulsions in effecting oral absorption and the subsequent immune responses to a lipopolysaccharide vaccine (LPS) after immunisation. Nasal delivery of LPS was carried out in parallel work using either aqueous solution or gel formulations. Tetanus toxoid vaccine in simple solution was delivered to guinea pigs as free antigen or entrapped in DSPC liposomes. In addition, adsorbed tetanus toxoid vaccine was delivered nasally free or in an aerosil gel formulation. This work was extended to investigate guinea pigs immunised by various mucosal routes with a herpes simplex virus subunit vaccine prepared from virus infected cells and delivered in gels, multiple emulsions and liposomes. Comparable serum antibody responses resulted but failed to produce enhanced protection against vaginal challenge when compared to subcutaneous immunisation with alhydrogel adjuvanted vaccine. Thus, immunisation of the mucosal surface by these methods may have been inadequate. These studies were extended in an attempt to protect against HSV genital challenge by construction of an attenuated Salmonella typhimurium HWSH aroA mutant expressing a cloned glycoprotein D-l gene fused to the Es-cherichia coli lac z promoter. Preliminary work on the colonisation of guinea pigs with S. typhimurium HWSH aroA mutants were carried out, with the aim of using the guinea pig HSV vaginal model to investigate protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first comprehensive book about the relationship between apoptosis and autoimmune diseases. It offers a unique up–to–date overview on research results on the defective execution of apoptosis and the incomplete clearance of apoptotic cells. The molecular and cellular mechanisms involved are described in detail. As a possible consequence of apoptotic dysfunction, the development of severe autoimmune diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus) is discussed. An outlook on future research topics includes the evaluation of novel therapeutic strategies.