973 resultados para Motion recognition


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective feature extraction for robust speech recognition is a widely addressed topic and currently there is much effort to invoke non-stationary signal models instead of quasi-stationary signal models leading to standard features such as LPC or MFCC. Joint amplitude modulation and frequency modulation (AM-FM) is a classical non-parametric approach to non-stationary signal modeling and recently new feature sets for automatic speech recognition (ASR) have been derived based on a multi-band AM-FM representation of the signal. We consider several of these representations and compare their performances for robust speech recognition in noise, using the AURORA-2 database. We show that FEPSTRUM representation proposed is more effective than others. We also propose an improvement to FEPSTRUM based on the Teager energy operator (TEO) and show that it can selectively outperform even FEPSTRUM

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D Face Recognition is an active area of research for past several years. For a 3D face recognition system one would like to have an accurate as well as low cost setup for constructing 3D face model. In this paper, we use Profilometry approach to obtain a 3D face model.This method gives a low cost solution to the problem of acquiring 3D data and the 3D face models generated by this method are sufficiently accurate. We also develop an algorithm that can use the 3D face model generated by the above method for the recognition purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-axis micromanipulators, whose tip orientation and position can be controlled in real time in the scanning plane, enable versatile probing systems for 2.5-D nanometrology. The key to achieve high-precision probing systems is to accurately control the interaction point of the manipulator tip when its orientation is changed. This paper presents the development of a probing system wherein the deviation in the end point due to large orientation changes is controlled to within 10 nm. To achieve this, a novel micromanipulator design is first proposed, wherein the end point of the tip is located on the axis of rotation. Next, the residual tip motion caused by fabrication error and actuation crosstalk is modeled and a systematic method to compensate it is presented. The manipulator is fabricated and the performance of the developed scheme to control tip position during orientation change is experimentally validated. Subsequently, the two-axis probing system is demonstrated to scan the full top surface of a micropipette down to a diameter of 300 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical micro-scale model is developed to study the behavior of dendrite growth in presence of melt convection. In this method, an explicit, coupled enthalpy model is used to simulate the growth of an equiaxed dendrite, while a Volume of Fluid (VOF) method is used to track the movement of the dendrite in the convecting melt in a two-dimensional Eulerian framework. Numerical results demonstrate the effectiveness of the enthalpy model in simulating the dendritic growth involving complex shape, and the accuracy of VOF method in conserving mass and preserving the complex dendritic shape during motion. Simulations are performed in presence of uniform melt flow for both fixed and moving dendrites, and the difference in dendrite morphology is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.