940 resultados para Moriscos-1609-1614 (Expulsión)
Resumo:
Ubiquitous healthcare is an emerging area of technology that uses a large number of environmental and patient sensors and actuators to monitor and improve patients’ physical and mental condition. Tiny sensors gather data on almost any physiological characteristic that can be used to diagnose health problems. This technology faces some challenging ethical questions, ranging from the small-scale individual issues of trust and efficacy to the societal issues of health and longevity gaps related to economic status. It presents particular problems in combining developing computer/information/media ethics with established medical ethics. This article describes a practice-based ethics approach, considering in particular the areas of privacy, agency, equity and liability. It raises questions that ubiquitous healthcare will force practitioners to face as they develop ubiquitous healthcare systems. Medicine is a controlled profession whose practise is commonly restricted by government-appointed authorities, whereas computer software and hardware development is notoriously lacking in such regimes.
Resumo:
An apple rootstock progeny raised from the cross between the very dwarfing ‘M.27’ and the more vigorous ‘M.116’ (‘M.M.106’ × ‘M.27’) was used for the construction of a linkage map comprising a total of 324 loci: 252 previously mapped SSRs, 71 newly characterised or previously unmapped SSR loci (including 36 amplified by 33 out of the 35 novel markers reported here), and the self-incompatibility locus. The map spanned the 17 linkage groups (LG) expected for apple covering a genetic distance of 1,229.5 cM, an estimated 91% of the Malus genome. Linkage groups were well populated and, although marker density ranged from 2.3 to 6.2 cM/SSR, just 15 gaps of more than 15 cM were observed. Moreover, only 17.5% of markers displayed segregation distortion and, unsurprisingly in a semi-compatible backcross, distortion was particularly pronounced surrounding the self-incompatibility locus (S) at the bottom of LG17. DNA sequences of 273 SSR markers and the S locus, representing a total of 314 loci in this investigation, were used to anchor to the ‘Golden Delicious’ genome sequence. More than 260 of these loci were located on the expected pseudo-chromosome on the ‘Golden Delicious’ genome or on its homeologous pseudo-chromosome. In total, 282.4 Mbp of sequence from 142 genome sequence scaffolds of the Malus genome were anchored to the ‘M.27’ × ‘M.116’ map, providing an interface between the marker data and the underlying genome sequence. This will be exploited for the identification of genes responsible for traits of agronomic importance such as dwarfing and water use efficiency.
Resumo:
Semi-structured interviews with university students in the UK and Japan, undertaken in 2009 and 2010, are analysed with respect to the revealed attitudes to privacy, self-revelation and revelation by/of others on SNS.
Resumo:
We revisit the boundedness of Hankel and Toeplitz operators acting on the Hardy space H 1 and give a new proof of the old result stating that the Hankel operator H a is bounded if and only if a has bounded logarithmic mean oscillation. We also establish a sufficient and necessary condition for H a to be compact on H 1. The Fredholm properties of Toeplitz operators on H 1 are studied for symbols in a Banach algebra similar to C + H ∞ under mild additional conditions caused by the differences in the boundedness of Toeplitz operators acting on H 1 and H 2.
Resumo:
In terms of evolution, the strategy of catching prey would have been an important part of survival in a constantly changing environment. A prediction mechanism would have developed to compensate for any delay in the sensory-motor system. In a previous study, “proactive control” was found, in which the motion of the hands preceded the virtual moving target. These results implied that the positive phase shift of the hand motion represents the proactive nature of the visual-motor control system, which attempts to minimize the brief error in the hand motion when the target changes position unexpectedly. In our study, a visual target moves in circle (13 cm diameter) on a computer screen, and each subject is asked to keep track of the target’s motion by the motion of a cursor. As the frequency of the target increases, a rhythmic component was found in the velocity of the cursor in spite of the fact that the velocity of the target was constant. The generation of a rhythmic component cannot be explained simply as a feedback mechanism for the phase shifts of the target and cursor in a sensory-motor system. Therefore, it implies that the rhythmic component was generated to predict the velocity of the target, which is a feed-forward mechanism in the sensory-motor system. Here, we discuss the generation of the rhythmic component and its roll in the feed-forward mechanism.
Resumo:
The gamergate (generally called the “queen”) of the Diacamma sp. walks around in the nest and comes into contact with the workers. The gamergate informs the workers of its presence by physical contact. This behavior is called a “patrol.” In previous work, it was reported that the gamergate controls its patrolling time depending on the colony size. How does the gamergate know the colony size, and how does it control the patrolling time? In this article, we propose a simple dynamics to explain this behavior. We assume that the gamergate and the workers have internal states which interact by physical contacts. By numerical simulations, we confirm that the patrol time of the proposed model depends on the size of the colony.
Resumo:
In order to shed light on the collective behavior of social insects, we analyzed the behavior of ants from single to multi-body. In an experimental set-up, ants are placed in hemisphere without a nest and food. Trajectory of ants is recorded. From this bottom-up approach, we found that collective behavior of ants as follows: 1. Activity of single ant increases and decreases periodically. 2. Spontaneous meeting process is observed between two ants and meeting spot of two ants is localized in hemisphere. 3. Result on division of labor is obtained between two ants.
Resumo:
This paper explores the potential of polysialic acid (PSA) as a carrier for low molecular weight anticancer drugs. A PSA–epirubicin (Epi) conjugate was synthesized and compared against Epi conjugates containing established carriers, namely: N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly(ethylene glycol) (PEG) and polyglutamic acid (PGA). Biological assessments in the breast cancer cell line MCF-7 and in the anthracycline resistant MCF-7/DX showed that the PSA–Epi conjugate had the highest activity (40% and 30% cell death in the two cell lines at 1 mM Epi equiv., respectively). FACS studies confirmed internalization of all conjugates by cholesterol-dependent endocytosis. PSA–Epi showed release of Epi (40% at 5 h) when incubated with lysosome extracts. In vivo evaluation showed that all conjugates had a significantly longer half-life compared to free Epi. This study also allowed an investigation on the effect of the polymeric carrier on the biological activity of a conjugate, with the biodegradability of the carrier emerging as an important feature.
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.
Resumo:
This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p < 0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.
Resumo:
The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.