958 resultados para Montmorillonite, Organoclay, Adsorption, Phenol, Infrared Spectroscopy, Near Infrared Spectroscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

SiO2-TiO2 materials prepared by sol-gel method were evaluated in the photocatalytic degradation of diuron. The materials were prepared with and without surfactant cetyltrimethylammonium chloride at different temperatures (25, 50 and 100 ºC). The samples were characterized by N2 adsorption-desorption measurements, scanning electron microscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy and infrared diffuse reflectance spectroscopy. The results showed that the materials synthesized with the surfactant had higher surface areas and band-gap values similar to anatase. All materials were more active than the commercial catalyst P-25 and better performance was achieved using the surfactant in the material synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Doripenem was characterized through physicochemical and spectroscopic techniques, as well as thermal analysis. TLC (Rf = 0.62) and HPLC (rt = 7.4 min) were found to be adequate to identify the drug. UV and infrared spectra showed similar profile between doripenem bulk and standard. The ¹H and 13C NMR analysis revealed chemical shifts that allowed identifying the drug. Thermal analysis demonstrated three steps with mass loss, at 128, 178 and 276 ºC. The work was successfully applied to qualitative analysis of doripenem, showing the reported methods can be used for physicochemical characterization of doripenem

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present paper focuses on improving chromium (III) uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III) maximum adsorption capacity (MAC) value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1) giving a MAC value about three times greater (20.34 mg g-1) than for raw sugarcane bagasse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this manuscript was to show the basic concepts and practical application of Partial Least Squares (PLS) as a tutorial, using the Matlab computing environment for beginners, undergraduate and graduate students. As a practical example, the determination of the drug paracetamol in commercial tablets using Near-Infrared (NIR) spectroscopy and Partial Least Squares (PLS) regression was shown, an experiment that has been successfully carried out at the Chemical Institute of Campinas State University for chemistry undergraduate course students to introduce the basic concepts of multivariate calibration in a practical way.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study developed and validated a method for moisture determination in artisanal Minas cheese, using near-infrared spectroscopy and partial-least-squares. The model robustness was assured by broad sample diversity, real conditions of routine analysis, variable selection, outlier detection and analytical validation. The model was built from 28.5-55.5% w/w, with a root-mean-square-error-of-prediction of 1.6%. After its adoption, the method stability was confirmed over a period of two years through the development of a control chart. Besides this specific method, the present study sought to provide an example multivariate metrological methodology with potential for application in several areas, including new aspects, such as more stringent evaluation of the linearity of multivariate methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) is a resolution method that has been efficiently applied in many different fields, such as process analysis, environmental data and, more recently, hyperspectral image analysis. When applied to second order data (or to three-way data) arrays, recovery of the underlying basis vectors in both measurement orders (i.e. signal and concentration orders) from the data matrix can be achieved without ambiguities if the trilinear model constraint is considered during the ALS optimization. This work summarizes different protocols of MCR-ALS application, presenting a case study: near-infrared image spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wood is an extremely complex biological material, which can show macroscopic similarities that make it difficult to discriminate between species. Discrimination between similar wood species can be achieved by either anatomic or instrumental methods, such as near infrared spectroscopy (NIR). Although different spectroscopy methods are currently available, few studies have applied them to discriminate between wood species. In this study, we applied a partial least squares-discriminant analysis (PLS-DA) model to evaluate the viability of using direct fluorescence measurements for discriminating between Eucalyptus grandis, Eucalyptus urograndis, and Cedrela odorata. The results show that molecular fluorescence is an efficient technique for discriminating between these visually similar wood species. With respect to calibration and the validation samples, we observed no misclassifications or outliers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hybrid 3-(1,4-phenylenediamine)propylsilica xerogel was obtained starting from two different organic precursor quantity (5 and 8 mmol) to 22 mmol of TEOS, in the synthesis. The xerogel samples were characterized by using CHN elemental analysis, N2 adsorption-desorption isotherms, infrared thermal analysis. The xerogel was used as metal sorbent for Cu2+, Cd2+ and Pb2+ in aqueous solution with concentration range of 10-3 to 10-5 mmol l-1. The quantity of organic precursor added in the synthesis influences the characteristics of the xerogel as morphology and thermal stability, as well as the metal adsorption capacity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kevlar [poly (p-phenilylene terephtalamide)], was used as a precursor in the preparation of activated carbon fibers. For this intention, physical and chemical activations were carried out. Activated fibers were physically prepared from the carbonization of the Kevlar and its later activation with CO2 and steam of water, by the other hand; the chemically activated fibers were obtained by means of the impregnation of the material with phosphoric acid and their later carbonization. Different conditions were used and preliminary analyses of the precursor were taken into account (TGA-DTA / IR). The resulting fibers were characterized by N2 (77K) adsorption, infrared spectroscopy, SEM, and immersion calorimetry. Yields and Burn off were also evaluated. The results shows that if you want to synthesize activated carbon fibers from Kevlar strong conditions respect to the commonly used such as water steam, high phosphoric acid concentrations and methods of impregnation are the ones who allows the development of optimal surface areas and pore volumes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT The objective of this study was to evaluate the thermoregulatory response of dairy buffaloes in pre-milking and post-milking. To identify animal thermoregulatory capacity, skin surface temperatures were taken by an infrared thermometer (SST), a thermographic camera (MTBP) as well as respiratory rate records (RR). Black Globe and Humidity Index (BGHI), radiating thermal load (RTL) and enthalpy (H) were used to characterize the thermal environment. Artificial Neural Networks analyzed those indices as well as animal physiological data, using a single layer trained with the least mean square (LMS) algorithm. The results indicated that pre-milking and post-milking environments reached BGHI, RR, SST and MTBP values above thermal neutrality zone for buffaloes. In addition, limits of surface skin temperatures were mostly influenced by changing ambient conditions to the detriment of respiratory rates. It follows that buffaloes are sensitive to environmental changes and their skin temperatures are the best indicators of thermal comfort in relation to respiratory rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT International trade in broiler’ feet, mainly to Asian markets, has demanded better quality control. The objective of this research was to study the suitability of using chicken footpad surface temperature to determine early lesions of pododermatitis. The project was conducted in two houses A1 and A2) in a commercial farm during one production flock. A1 had reused litter of wood shavings and rice hulls, and A2 had a new litter of sawdust. Both houses had positive pressure ventilation. The inner area of the poultry was virtually divided into three quadrants. The footpads were checked for the feet quality, and a degree of pododermatitis was awarded. Thermal images were made to test the surface temperature of the foot and identify inflammation in a total of 30 birds per house, at ages 5, 19, 29, 28 and 40 days of grow-out. Conditions of the rearing environment as well as the surface temperature of the litter, litter moisture, and degree of compression, were recorded. The environment within the houses did not differ. The surface temperatures of the footpad did not differ between the groups. The minimum footpad surface temperatures within the scores were similar, except for the score 3, which did not occur in A1. There was a prevalence of severe injury in the house with a new litter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many industrial applications, such as the printing and coatings industry, wetting of porous materials by liquids includes not only imbibition and permeation into the bulk but also surface spreading and evaporation. By understanding these phenomena, valuable information can be obtained for improved process control, runnability and printability, in which liquid penetration and subsequent drying play important quality and economic roles. Knowledge of the position of the wetting front and the distribution/degree of pore filling within the structure is crucial in describing the transport phenomena involved. Although exemplifying paper as a porous medium in this work, the generalisation to dynamic liquid transfer onto a surface, including permeation and imbibition into porous media, is of importance to many industrial and naturally occurring environmental processes. This thesis explains the phenomena in the field of heatset web offset printing but the content and the analyses are applicable in many other printing methods and also other technologies where water/moisture monitoring is crucial in order to have a stable process and achieve high quality end products. The use of near-infrared technology to study the water and moisture response of porous pigmented structures is presented. The use of sensitive surface chemical and structural analysis, as well as the internal structure investigation of a porous structure, to inspect liquid wetting and distribution, complements the information obtained by spectroscopic techniques. Strong emphasis has been put on the scale of measurement, to filter irrelevant information and to understand the relationship between interactions involved. The near-infrared spectroscopic technique, presented here, samples directly the changes in signal absorbance and its variation in the process at multiple locations in a print production line. The in-line non-contact measurements are facilitated by using several diffuse reflectance probes, giving the absolute water/moisture content from a defined position in the dynamic process in real-time. The nearinfrared measurement data illustrate the changes in moisture content as the paper is passing through the printing nips and dryer, respectively, and the analysis of the mechanisms involved highlight the roles of the contacting surfaces and the relative liquid carrier properties of both non-image and printed image areas. The thesis includes laboratory studies on wetting of porous media in the form of coated paper and compressed pigment tablets by mono-, dual-, and multi-component liquids, and paper water/moisture content analysis in both offline and online conditions, thus also enabling direct sampling of temporal water/moisture profiles from multiple locations. One main focus in this thesis was to establish a measurement system which is able to monitor rapid changes in moisture content of paper. The study suggests that near-infrared diffuse reflectance spectroscopy can be used as a moisture sensitive system and to provide accurate online qualitative indicators, but, also, when accurately calibrated, can provide quantification of water/moisture levels, its distribution and dynamic liquid transfer. Due to the high sensitivity, samples can be measured with excellent reproducibility and good signal to noise ratio. Another focus of this thesis was on the evolution of the moisture content, i.e. changes in moisture content referred to (re)wetting, and liquid distribution during printing of coated paper. The study confirmed different wetting phases together with the factors affecting each phase both for a single droplet and a liquid film applied on a porous substrate. For a single droplet, initial capillary driven imbibition is followed by equilibrium pore filling and liquid retreat by evaporation. In the case of a liquid film applied on paper, the controlling factors defining the transportation were concluded to be the applied liquid volume in relation to surface roughness, capillarity and permeability of the coating giving the liquid uptake capacity. The printing trials confirmed moisture gradients in the printed sheet depending on process parameters such as speed, fountain solution dosage and drying conditions as well as the printed layout itself. Uneven moisture distribution in the printed sheet was identified to be one of the sources for waving appearance and the magnitude of waving was influenced by the drying conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Textile manufacture occupies a prominent place in the national economy. Because of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed by the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. This work presents a technique for the measurement of the temperature based on the processing of infrared images. With this purpose, it was developed a system which is composed of an infrared camera, a framegrabber PC board and a software which analyses the punctual temperature in the cut area enabling the operator to achieve the necessary control of other variables involved in the process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.