928 resultados para Molecular markers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eine wichtige Voraussetzung für das Verständnis der Spezifizierungsmechanismen unterschiedlicher Zelltypen im embryonalen Gehirn ist die detaillierte Kenntnis des neuroektodermalen Ursprungs seiner neuralen Stammzellen (Neuroblasten, NB), sowie der Morphologie und zellulären Komposition der daraus hervorgehenden Zellstammbäume (ZSBe). In der vorliegenden Arbeit wurde die Entstehung und Topologie von 21 embryonalen ZSBen im anteriorsten Gehirnteil, dem Protocerebrum, charakterisiert, mit besonderem Fokus auf solche ZSBe, die den Pilzkörper konstituieren. Pilzkörper sind prominente, paarige Neuropilzentren, die eine wichtige Rolle bei der Verarbeitung olfaktorischer Informationen, beim Lernen und bei der Gedächtnisbildung spielen. In dieser Arbeit konnte erstmalig die Embryonalentwicklung der Pilzkörper ab dem Zeitpunkt der Entstehung ihrer NBen im procephalen Neuroektoderm (pNE), bis hin zum funktionellen Gehirnzentrum in der frühen Larve auf Ebene individueller ZSBe bzw. einzelner Neurone beschrieben werden. Mittels der klonalen Di-Markierungstechnik konnte ich zeigen, dass die vier NBen der Pilzkörper (PKNBen) jeder Gehirnhemisphäre innerhalb des NE aus dem ventralen Bereich der mitotischen Domäne B (δB) hervorgehen. Ein in diesem Bereich liegendes proneurales Feld beherbergt etwa 10-12 Zellen, die alle das Potential haben sich zu PKNBen zu entwickeln. Des Weiteren zeigen diese Untersuchungen, dass die PKNBen (und weitere NBen der δB) aus benachbarten NE-Zellen hervorgehen. Dieser Befund impliziert, dass der Mechanismus der lateralen Inhibition in diesem Bereich des NE keine Rolle spielt. Weiterhin stellte sich heraus, dass jeder PKNB eine ihm eigene Position im sich entwickelnden Pilzkörperkortex besetzt und eine spezifische Kombination der Transkriptionsfaktoren Dachshund, Eyeless und Retinal homeobox exprimiert. Dadurch konnte jeder der vier PKNBen in den betreffenden frühembryonalen NB-Karten einem der ca. 105 NBen pro Gehirnhemisphäre zugeordnet werden. Die PKNBen bringen individuelle ZSBe hervor, die Pilzkörper-intrinsische γ-Neurone beinhalten, aber auch jeweils charakteristische Sets an Interneuronen, die nicht am Aufbau des Pilzkörpers beteiligt sind. Diese verschiedenen Neuronentypen entstehen in einer zeitlichen Abfolge, die für jeden PKNBen spezifisch ist. Ihre embryonalen ZSBe sind aber nicht nur durch individuelle Sets an frühgeborenen ni-Neuronen charakterisiert, sondern auch durch spezifische Unterschiede in der Anzahl ihrer γ-Neurone, welche jedoch, wie ich zeigen konnte, nicht durch Apoptose reguliert wird. Weiterhin konnte ich zeigen, dass γ-Neurone, in einer PKNB Klon-abhängigen Weise, spezifische Unterschiede in der räumlich-zeitlichen Innervation des Pedunkels, der Calyx und der Loben aufweisen. Im Weiteren wurde die Expression verschiedener molekularer Marker in diesen ZSBen charakterisiert, u.a. die Expression verschiedener Gal4-Fliegenstämme, und solcher Transkriptionsfaktoren, die eine wichtige Rolle bei der temporären Spezifizierung im VNS spielen. So werden hb, Kr, pdm1 auch in Nachkommenzellen der PKNBen exprimiert und haben möglicherweise eine Funktion bei ihrer temporären Spezifizierung. Diese Arbeit gibt auch erstmalig Einblick in die vollständige spätembryonale/frühlarvale Morphologie anderer protocerebraler Gehirnzellstammbäume aus δB und δ1. Die Beschreibungen dieser ZSBe beinhalten Angaben zu deren Zellzahl, Zelltypen, der Lage der ZSBe im Gehirn, axonalen/dendritischen Projektionsmustern sowie dem Entstehungsort des NBen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I investigated the systematics, phylogeny and biogeographical history of Juncaginaceae, a small family of the early-diverging monocot order Alismatales which comprises about 30 species of annual and perennial herbs. A wide range of methods from classical taxonomy to molecular systematic and biogeographic approaches was used. rnrnIn Chapter 1, a phylogenetic analysis of the family and members of Alismatales was conducted to clarify the circumscription of Juncaginaceae and intrafamilial relationships. For the first time, all accepted genera and those associated with the family in the past were analysed together. Phylogenetic analysis of three molecular markers (rbcL, matK, and atpA) showed that Juncaginaceae are not monophyletic. As a consequence the family is re-circumscribed to exclude Maundia which is pro-posed to belong to a separate family Maundiaceae, reducing Juncaginaceae to include Tetroncium, Cycnogeton and Triglochin. Tetroncium is weakly supported as sister to the rest of the family. The reinstated Cycnogeton (formerly included in Triglochin) is highly supported as sister to Triglochin s.str. Lilaea is nested within Triglochin s. str. and highly supported as sister to the T. bulbosa complex. The results of the molecular analysis are discussed in combination with morphological characters, a key to the genera of the family is given, and several new combinations are made.rnrnIn Chapter 2, phylogenetic relationships in Triglochin were investigated. A species-level phylogeny was constructed based on molecular data obtained from nuclear (ITS, internal transcribed spacer) and chloroplast sequence data (psbA-trnH, matK). Based on the phylogeny of the group, divergence times were estimated and ancestral distribution areas reconstructed. The monophyly of Triglochin is confirmed and relationships between the major lineages of the genus were resolved. A clade comprising the Mediterranean/African T. bulbosa complex and the American T. scilloides (= Lilaea s.) is sister to the rest of the genus which contains two main clades. In the first, the widespread T. striata is sister to a clade comprising annual Triglochin species from Australia. The second clade comprises T. palustris as sister to the T. maritima complex, of which the latter is further divided into a Eurasian and an American subclade. Diversification in Triglochin began in the Miocene or Oligocene, and most disjunctions in Triglochin were dated to the Miocene. Taxonomic diversity in some clades is strongly linked to habitat shifts and can not be observed in old but ecologically invariable lineages such as the non-monophyletic T. maritima.rnrnChapter 3 is a collaborative revision of the Triglochin bulbosa complex, a monophyletic group from the Mediterranean region and Africa. One new species, Triglochin buchenaui, and two new subspecies, T. bulbosa subsp. calcicola and subsp. quarcicola, from South Africa were described. Furthermore, two taxa were elevated to species rank and two reinstated. Altogether, seven species and four subspecies are recognised. An identification key, detailed descriptions and accounts of the ecology and distribution of the taxa are provided. An IUCN conservation status is proposed for each taxon.rnrnChapter 4 deals with the monotypic Tetroncium from southern South America. Tetroncium magellanicum is the only dioecious species in the family. The taxonomic history of the species is described, type material is traced, and a lectotype for the name is designated. Based on an extensive study of herbarium specimens and literature, a detailed description of the species and notes on its ecology and conservation status are provided. A detailed map showing the known distribution area of T. magellanicum is presented. rnrnIn Chapter 5, the flower structure of the rare Australian endemic Maundia triglochinoides (Maundiaceae, see Chapter 1) was studied in a collaborative project. As the morphology of Maundia is poorly known and some characters were described differently in the literature, inflorescences, flowers and fruits were studied using serial mictrotome sections and scanning electron microscopy. The phylogenetic placement, affinities to other taxa, and the evolution of certain characters are discussed. As Maundia exhibits a mosaic of characters of other families of tepaloid core Alismatales, its segregation as a separate family seems plausible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Kolumnarwachstum beim Apfel (Malus x domestica) geht auf eine in den frühen 1960er Jahren entdeckte Zufallsmutation zurück. Die daraus resultierende Sprossmutante ist von großem wirtschaftlichem Interesse, da diese sehr kompakte Wuchsform unter anderem zu einer enormen Ertragssteigerung durch eine hohe Pflanzdichte der Bäume führt. Das Ziel der Arbeit ist die Entschlüsselung der molekularen Ursache dieser Mutation, die bisher weitgehend ungeklärt ist. Die Analyse wurde durch die Erstellung einer Referenzsequenz der Co-Zielregion einer kolumnaren Apfelsorte sowie durch die Konstruktion eng gekoppelter molekularer Marker realisiert. Durch die Konstruktion von genomischen Apfel-BAC-Bibliotheken mit mehrfacher Genomabdeckung und die Erstellung geeigneter Sonden wurde die Co-Region kloniert und deren Sequenz bestimmt. In Kombination zu dieser klassischen positionellen Klonierungsstrategie wurden genomische Illumina „mate pair“-Bibliotheken erstellt, sequenziert und bioinformatisch analysiert, um die genomische Region vollständig zu annotieren. Somit wurde eine vollständige genomische Referenz der Co-Region einer kolumnaren Apfelsorte erstellt, die die Grundlage für weitere Analysen bildet. Auf Basis dieser Referenz konnte die Co-Mutation in Form der Integration des LTR-Retrotransposons Gypsy-44 im kolumnaren Chromosom an Position 18,79 Mbp auf Chromosom 10 lokalisiert werden. Darüber hinaus konnten Transposon-basierende molekulare Marker erstellt werden, die eine verlässliche Genotypisierung von Apfelbäumen in Bezug auf das Kolumnarwachstum ermöglichen und dies unabhängig von der verwendeten Apfelsorte. Der genaue Wirkmechanismus von Gypsy-44, der zur Ausprägung dieses extremen Phänotyps führt, ist bislang unklar. Zusammenfassend lässt sich sagen, dass die molekulare Ursache für das kolumnare Wachstum aufgeklärt werden konnte und zudem die ersten molekularen Marker erstellt wurden, die eine sortenunabhängige Differenzierung zwischen kolumnaren und nicht kolumnaren Apfelbäumen ermöglichen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatial analyses of plant-distribution patterns can provide inferences about intra- and interspecific biotic interactions. Yet, such analyses are rare for clonal plants because effective tools (i.e., molecular markers) needed to map naturally occurring clonal individuals have only become available recently. Clonal plants are unique in that a single genotype has a potential to spatially place new individuals (i.e., ramets) in response to intra- and interspecific biotic interactions. Laboratory and greenhouse studies suggest that some clonal plants can avoid intra-genet, inter-genet, and inter-specific competition via rootplacement patterns. An intriguing and yet to be explored question is whether a spatial signature of such multi-level biotic interactions can be detected in natural plant communities. The facultatively clonal Serenoa repens and non-clonal Sabal etonia are ecologically similar and co-dominant palmettos that sympatrically occur in the Florida peninsula. We used amplified fragment length polymorphisms (AFLPs) to identify Serenoa genets and also to assign field-unidentifiable small individuals as Sabal seedlings, Serenoa seedlings, or Serenoa vegetative sprouts. Then, we conducted univariate and bivariate multi-distance spatial analyses to examine the spatial interactions of Serenoa (n=271) and Sabal (n=137) within a 20x20 m grid at three levels, intragenet, intergenet and interspecific. We found that spatial interactions were not random at all three levels of biotic interactions. Serenoa genets appear to spatially avoid self-competition as well as intergenet competition. Furthermore, Serenoa and Sabal were spatially negatively associated with each other. However, this negative association pattern was also evident in a spatial comparison between non-clonal Serenoa and Sabal, suggesting that Serenoa genets’ spatial avoidance of Sabal through placement of new ramets is not the explanation of the interspecific-level negative spatial pattern. Our results emphasize the importance of investigating spatial signatures of biotic as well as abiotic interactions at multiple levels in understanding spatial distribution patterns of clonal plants in natural plant communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Mycobacterium tuberculosis has a global population structure consisting of six main phylogenetic lineages associated with specific geographic regions and human populations. One particular M. tuberculosis genotype known as “Beijing” has repeatedly been associated with drug resistance and has been emerging in some parts of the world. “Beijing” strains are traditionally defined based on a characteristic spoligotyping pattern. We used three alternative genotyping techniques to revisit the phylogenetic classification of M. tuberculosis complex (MTBC) strains exhibiting the typical “Beijing” spoligotyping pattern. Methods and Findings MTBC strains were obtained from an ongoing molecular epidemiological study in Switzerland and Nepal. MTBC genotyping was performed based on SNPs, genomic deletions, and 24-loci MIRU-VNTR. We identified three MTBC strains from patients originating from Tibet, Portugal and Nepal which exhibited a spoligotyping patterns identical to the classical Beijing signature. However, based on three alternative molecular markers, these strains were assigned to Lineage 3 (also known as Delhi/CAS) rather than to Lineage 2 (also known as East-Asian lineage). Sequencing of the RD207 in one of these strains showed that the deletion responsible for this “Pseudo-Beijing” spoligotype was about 1,000 base pairs smaller than the usual deletion of RD207 in classical “Beijing” strains, which is consistent with an evolutionarily independent deletion event in the direct repeat (DR) region of MTBC. Conclusions We provide an example of convergent evolution in the DR locus of MTBC, and highlight the limitation of using spoligotypes for strain classification. Our results indicate that a proportion of “Beijing” strains may have been misclassified in the past. Markers that are more phylogenetically robust should be used when exploring strain-specific differences in experimental or clinical phenotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Franches-Montagnes is an indigenous Swiss horse breed, with approximately 2500 foalings per year. The stud book is closed, and no introgression from other horse breeds was conducted since 1998. Since 2006, breeding values for 43 different traits (conformation, performance and coat colour) are estimated with a best linear unbiased prediction (BLUP) multiple trait animal model. In this study, we evaluated the genetic diversity for the breeding population, considering the years from 2003 to 2008. Only horses with at least one progeny during that time span were included. Results were obtained based on pedigree information as well as from molecular markers. A series of software packages were screened to combine best the best linear unbiased prediction (BLUP) methodology with optimal genetic contribution theory. We looked for stallions with highest breeding values and lowest average relationship to the dam population. Breeding with such stallions is expected to lead to a selection gain, while lowering the future increase in inbreeding within the breed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the "Beijing" sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Franches-Montagnes is the only native horse breed in Switzerland, therefore special efforts should be made for ensuring its survival. The objectives of this study were to characterize the structure of this population as well as genetic variability with pedigree data, conformation traits and molecular markers. Studies were focused to clarify if this population is composed of a heavy- and a light-type subpopulation. Extended pedigree records of 3-year-old stallions (n = 68) and mares (n = 108) were available. Evaluations of body conformation traits as well as pedigree data and molecular markers did not support the two-subpopulation hypothesis. The generation interval ranged from 7.8 to 9.3 years. The complete generation equivalent was high (>12). The number of effective ancestors varied between 18.9 and 20.1, whereof 50% of the genetic variability was attributed to seven of them. Genetic contribution of Warmblood horses ranged from 36% to 42% and that of Coldblood horses from 4% to 6%. The average inbreeding coefficient reached 6%. Inbreeding effective population size was 114.5 when the average increase of the inbreeding coefficient per year since 1910 was taken. Our results suggest that bottleneck situations occurred because of selection of a small number of sire lines. Promotion of planned matings between parents that are less related is recommended in order to avoid a reduction of the genetic diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Transactivated hepatic stellate cells (HSCs) represent the key source of extra cellular matrix (ECM) in fibrotic liver. Imatinib, a potent inhibitor of the PDGF receptor tyrosine kinase, reduces HSC proliferation and fibrogenesis when treatment is initiated before fibrosis has developed. We tested the antifibrotic potential of imatinib in ongoing liver injury and in established fibrosis. METHODS: BDL-rats were gavage fed with 20 mg/kg/d imatinib either early (days 0-21) or late (days 22-35) after BDL. Untreated BDL-rats served as controls. ECM and activated HSCs were quantified by morphometry. Tissue activity of MMP-2 was determined by gelatin zymography. mRNA expression of TIMP-1 and procollagen alpha1(I) were measured by RT-PCR. Liver tissue concentration of imatinib was measured by tandem mass spectrometry. RESULTS: Early imatinib reduced ECM formation by 30% (P=0.0455) but left numbers of activated HSCs and procollagen I expression unchanged. MMP-2 activity and TIMP-1 expression were reduced by 50%. Late imatinib treatment did not alter histological or molecular markers of fibrogenesis despite high imatinib tissue levels. CONCLUSIONS: The antifibrotic effectiveness of imatinib is limited to the early phase of fibrogenesis. In ongoing liver injury other mediators most likely compensate for the inhibited PDGF effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Diagnosis and prognosis in breast cancer are mainly based on histology and immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) material. Recently, gene expression analysis was shown to elucidate the biological variance between tumors and molecular markers were identified that led to new classification systems that provided better prognostic and predictive parameters. Archived FFPE samples represent an ideal source of tissue for translational research, as millions of tissue blocks exist from routine diagnostics and from clinical studies. These should be exploited to provide clinicians with more accurate prognostic and predictive information. Unfortunately, RNA derived from FFPE material is partially degraded and chemically modified and reliable gene expression measurement has only become successful after implementing novel and optimized procedures for RNA isolation, demodification and detection. METHODS: In this study we used tissue cylinders as known from the construction of tissue microarrays. RNA was isolated with a robust protocol recently developed for RNA derived from FFPE material. Gene expression was measured by quantitative reverse transcription PCR. RESULTS: Sixteen tissue blocks from 7 patients diagnosed with multiple histological subtypes of breast cancer were available for this study. After verification of appropriate localization, sufficient RNA yield and quality, 30 tissue cores were available for gene expression measurement on TaqMan(R) Low Density Arrays (16 invasive ductal carcinoma (IDC), 8 ductal carcinoma in situ (DCIS) and 6 normal tissue), and 14 tissue cores were lost. Gene expression values were used to calculate scores representing the proliferation status (PRO), the estrogen receptor status and the HER2 status. The PRO scores measured from entire sections were similar to PRO scores determined from IDC tissue cores. Scores determined from normal tissue cores consistently revealed lower PRO scores than cores derived from IDC or DCIS of the same block or from different blocks of the same patient. CONCLUSION: We have developed optimized protocols for RNA isolation from histologically distinct areas. RNA prepared from FFPE tissue cores is suitable for gene expression measurement by quantitative PCR. Distinct molecular scores could be determined from different cores of the same tumor specimen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular markers reliably predicting failure or success of Bacillus Calmette-Guérin (BCG) in the treatment of nonmuscle-invasive urothelial bladder cancer (NMIBC) are lacking. The aim of our study was to evaluate the value of cytology and chromosomal aberrations detected by fluorescence in situ hybridization (FISH) in predicting failure to BCG therapy. Sixty-eight patients with NMIBC were prospectively recruited. Bladder washings collected before and after BCG instillation were analyzed by conventional cytology and by multitarget FISH assay (UroVysion, Abbott/Vysis, Des Plaines, IL) for aberrations of chromosomes 3, 7, 17 and 9p21. Persistent and recurrent bladder cancers were defined as positive events during follow-up. Twenty-six of 68 (38%) NMIBC failed to BCG. Both positive post-BCG cytology and positive post-BCG FISH were significantly associated with failure of BCG (hazard ratio (HR)= 5.1 and HR= 5.6, respectively; p < 0.001 each) when compared to those with negative results. In the subgroup of nondefinitive cytology (all except those with unequivocally positive cytology), FISH was superior to cytology as a marker of relapse (HR= 6.2 and 1.4, respectively). Cytology and FISH in post-BCG bladder washings are highly interrelated and a positive result predicts failure to BCG therapy in patients with NMIBC equally well. FISH is most useful in the diagnostically less certain cytology categories but does not provide additional information in clearly malignant cytology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTEXT: The presence of lymph node metastases and the extent of lymphadenectomy have both been shown to influence the outcome of patients with muscle-invasive bladder cancer. OBJECTIVE: Current standards for detection of lymph node metastases, lymph-node mapping studies, histopathologic techniques, and risk factors in relation to lymph node involvement are discussed. The impact of lymph node metastases and the extent of lymphadenectomy on the outcome of patients treated with radical cystectomy are analyzed. EVIDENCE ACQUISITION: A systematic literature review of bladder cancer and lymph nodes was performed searching the electronic databases Pubmed/Medline, Cochrane, and Embase. Articles were selected based on title, abstract, study format, and content by a consensus of all participating authors. EVIDENCE SYNTHESIS: Lymph node status is highly consequential in bladder cancer patients because the presence of lymph node metastases is predictive of poor outcome. Knowledge of primary landing sites of lymph node metastases is important for optimum therapeutic management. Accurate pathologic work-ups of resected lymph node tissue are mandatory. Molecular markers could potentially guide therapeutic decisions in the future because they may enable the detection of micrometastatic disease. In current series, radical cystectomy with an extended lymphadenectomy seems to provide a clinically meaningful therapeutic benefit compared with a limited approach. However, the anatomic boundaries of lymph node dissection are still under debate. Therefore, large prospective multicenter trials are needed to validate the influence of extended lymph node dissection on disease-specific survival. CONCLUSIONS: An extended pelvic lymph node dissection (encompassing the external iliac vessels, the obturator fossa, the lateral and medial aspects of the internal iliac vessels, and at least the distal half of the common iliac vessels together with its bifurcation) can be curative in patients with metastasis or micrometastasis to a few nodes. Therefore, the procedure may be offered to all patients undergoing radical cystectomy for invasive bladder cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.