960 resultados para Modelo ecológico integrado
Resumo:
p.309-315
Resumo:
p.21-27
Resumo:
p.89-97
Resumo:
p.25-32
Resumo:
p.113-123
Resumo:
p.65-84
Resumo:
El marco aceptado para el aprendizaje con los entornos de aprendizaje informáticos: se trata de un modelo de aprendizaje constructivista, basado en la resolución de problemas mediante exploración y conjetura. En este contexto el papel del profesor cambia, en la medida en que son diferentes: las condiciones de trabajo, las formas de comunicación que el software ofrece, los modos de proceder que se propician en la resolución de tareas, y los tipos de actividades matemáticas estándar que pueden proponerse. De acuerdo con lo planteado anteriormente, los intereses que motivan la problemática a desarrollar en el presente trabajo de grado, es determinar el papel que desempeña la evaluación en el proceso de enseñanza de las transformaciones de isometría cuando el docente ha integrado tecnología a sus prácticas educativas, a partir, de los desarrollos investigativos de la didáctica de las matemáticas, la ergonomía cognitiva y aspectos de orden curricular. Porque esto permitirá establecer ciertas variables de análisis tales como: el tipo de metodología que se pone en juego, la perspectiva que posee el maestro con respecto a la integración de las nuevas tecnologías en el aula de matemáticas, las diversas intenciones u objetivos que el maestro posee, el tipo de actividades que se proponen y las temáticas que se desarrollan; estas variables en conjunto contienen de manera explicita o implícita la evaluación que se lleva cabo al interior de un proceso de enseñanza y aprendizaje que integra el uso de las nuevas tecnologías, lo cual hace que las situaciones de enseñanza aprendizaje sean mucho más complejas desde un punto de vista didáctico, porque un sistema informático en primer lugar modifica los objetos de enseñanza y en segundo lugar modifica las relaciones que se pueden tener con dichos objetos.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
El objetivo de este trabajo es analizar de qué forma el uso de la computadora, como herramienta pedagógica, puede ayudar a superar a estudiantes brasileños de 1º año de una Escuela Técnica de Nivel Medio Integrado en el estado de Sergipe las dificultades de aprendizaje del 1º modelo de funciones trigonométricas a partir de la presentación de atividades potencialmente significativas. Los análisis se apoyan en la Teoría de las Situaciones didácticas de Brousseau (2008), en los princípios de la Ingeniería Didáctica de Artigue (1988) y en los conocimientos previos conforme a Moreira (2005). Se analisa la trayectoria histórica de las funciones trigonométricas, tres libros didácticos y, por último, la secuencia didáctica propuesta.
Resumo:
Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.
Resumo:
Este trabajo tiene como objetivo principal mostrar, a los estudiantes de los niveles superiores, los procedimientos principales de construcción de modelos matemáticos para resolver situaciones problemáticas que se manifiestan en la realidad cotidiana en el desarrollo de una determinada actividad profesional y como objetivo específico establecer alternativas de tarifas sociales con destino a núcleos de clientes perfectamente identificados en cuanto a su calidad, por su escasa capacidad de pago, y aproximadamente delimitados en cuanto a la cantidad. Bajo la denominación de tarifa social de cualquier servicio público se entiende a aquellas tarifas que, siguiendo distintos mecanismos, se subsidian implícita o explícitamente, parcial o totalmente, para beneficiar a ciertos sectores de usuarios con un determinado fin. Para tener una herramienta de análisis que permita simular distintas escenarios con el fin de fijar los subsidios a la tarifa de los clientes residenciales y tomar decisiones al respecto, se elaboró un modelo matemático que describe esta situación. Después del análisis de validación del modelo, mediante el trazado de superficies y curvas de nivel con la ayuda del medio lógico Derive, se realizó una simulación numérica a fin de acotar los resultados posibles que satisfagan los requerimientos impuestos por la situación problemática a resolver. Finalmente se concluye el trabajo con la especificación de la tarifa social buscada.
Resumo:
En este trabajo se presenta un modelo para caracterizar el razonamiento estadístico de los estudiantes al interpretar la información que es representa por el gráfico de gajas. El origen de dicho modelo se motiva en una experiencia de aula que considera y aplica los resultados obtenidos en una investigación realizada como trabajo de grado de la Maestría en Docencia de las Matemáticas y adscrita a la línea de investigación en Educación Estadística de la Universidad Pedagógica Nacional en el año 2009. Esta investigación pretende categorizar el razonamiento estadístico de un grupo de estudiantes de secundaria en un colegio público de la ciudad de Bogotá. Para obtener dicha categorización se propuso comparar conjuntos de datos representados mediante gráficos de caja. y, se empleó la teoría de clasificación conocida como taxonomía SOLO, la cual a su vez fue articulada con siete elementos de razonamiento sugeridos por los autores del presente trabajo.
Resumo:
En el contexto del modelo de Van Hiele, se ha llevado a cabo un estudio comparativo de dos colecciones de descriptores para el mismo concepto: El de aproximación local en su manifestación de la recta tangente a la gráfica de una curva en un punto. A partir de las visualizaciones que se obtienen de los mecanismos llamados "haz de secantes" y del "zoom", se concluye que, en efecto, el nivel de razonamiento es independiente de la forma de abordar el concepto, de ese mecanismo particular usado para acercarse al mismo.