825 resultados para Modeling Non-Verbal Behaviors Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo se enfoca en la implementación de un detector de arrecife de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (Autonomous Underwater Vehicle, AUV, por sus siglas en inglés). Una detección rápida de la presencia de coral asegura la estabilización del AUV frente al arrecife en el menor tiempo posible, evitando colisiones con el coral. La detección de coral se hace en una imagen que captura la escena que percibe la cámara del AUV. Se realiza una clasificación píxel por píxel entre dos clases: arrecife de coral y el plano de fondo que no es coral. A cada píxel de la imagen se le asigna un vector característico, el mismo que se genera mediante el uso de filtros Gabor Wavelets. Éstos son implementados en C++ y la librería OpenCV. Los vectores característicos son clasificados a través de nueve algoritmos de máquinas de aprendizaje. El desempeño de cada algoritmo se compara mediante la precisión y el tiempo de ejecución. El algoritmo de Árboles de Decisión resultó ser el más rápido y preciso de entre todos los algoritmos. Se creó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectif de la présente thèse est de générer des connaissances sur les contributions possibles d’une formation continue à l’évolution des perspectives et pratiques des professionnels de la santé buccodentaire. Prônant une approche centrée sur le patient, la formation vise à sensibiliser les professionnels à la pauvreté et à encourager des pratiques qui se veulent inclusives et qui tiennent compte du contexte social des patients. L’évaluation de la formation s’inscrit dans le contexte d’une recherche-action participative de développement d’outils éducatifs et de transfert des connaissances sur la pauvreté. Cette recherche-action aspire à contribuer à la lutte contre les iniquités sociales de santé et d’accès aux soins au Québec; elle reflète une préoccupation pour une plus grande justice sociale ainsi qu’une prise de position pour une santé publique critique fondée sur une « science des solutions » (Potvin, 2013). Quatre articles scientifiques, ancrés dans une philosophie constructiviste et dans les concepts et principes de l’apprentissage transformationnel (Mezirow, 1991), constituent le cœur de cette thèse. Le premier article présente une revue critique de la littérature portant sur l’enseignement de l’approche de soins centrés sur le patient. Prenant appui sur le concept d’une « épistémologie partagée », des principes éducatifs porteurs d’une transformation de perspective à l’égard de la relation professionnel-patient ont été identifiés et analysés. Le deuxième article de thèse s’inscrit dans le cadre du développement participatif d’outils de formation sur la pauvreté et illustre le processus de co-construction d’un scénario de court-métrage social réaliste portant sur la pauvreté et l’accès aux soins. L’article décrit et apporte une réflexion, notamment sur la dimension de co-formation entre les différents acteurs des milieux académique, professionnel et citoyen qui ont constitué le collectif À l’écoute les uns des autres. Nous y découvrons la force du croisement des savoirs pour générer des prises de conscience sur soi et sur ses préjugés. Les outils développés par le collectif ont été intégrés à une formation continue axée sur la réflexion critique et l’apprentissage transformationnel, et conçue pour être livrée en cabinet dentaire privé. Les deux derniers articles de thèse présentent les résultats d’une étude de cas instrumentale évaluative centrée sur cette formation continue et visant donc à répondre à l’objectif premier de cette thèse. Le premier consiste en une analyse des transformations de perspectives et d’action au sein d’une équipe de 15 professionnels dentaires ayant participé à la formation continue sur une période de trois mois. L’article décrit, entre autres, une plus grande ouverture, chez certains participants, sur les causes structurelles de la pauvreté et une plus grande sensibilité au vécu au quotidien des personnes prestataires de l’aide sociale. L’article comprend également une exploration des effets paradoxaux dans l’apprentissage, notamment le renforcement, chez certains, de perceptions négatives à l’égard des personnes prestataires de l’aide sociale. Le quatrième article fait état de barrières idéologiques contraignant la transformation des pratiques professionnelles : 1) l’identification à l’idéologie du marché privé comme véhicule d’organisation des soins; 2) l’attachement au concept d’égalité dans les pratiques, au détriment de l’équité; 3) la prédominance du modèle biomédical, contraignant l’adoption de pratiques centrées sur la personne et 4) la catégorisation sociale des personnes prestataires de l’aide sociale. L’analyse des perceptions, mais aussi de l’expérience vécue de ces barrières démontre comment des facteurs systémiques et sociaux influent sur le rapport entre professionnel dentaire et personne prestataire de l’aide sociale. Les conséquences pour la recherche, l’éducation dentaire, le transfert des connaissances, ainsi que pour la régulation professionnelle et les politiques de santé buccodentaire, sont examinées à partir de cette perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Social e das Organizações.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully articulated hand tracking promises to enable fundamentally new interactions with virtual and augmented worlds, but the limited accuracy and efficiency of current systems has prevented widespread adoption. Today's dominant paradigm uses machine learning for initialization and recovery followed by iterative model-fitting optimization to achieve a detailed pose fit. We follow this paradigm, but make several changes to the model-fitting, namely using: (1) a more discriminative objective function; (2) a smooth-surface model that provides gradients for non-linear optimization; and (3) joint optimization over both the model pose and the correspondences between observed data points and the model surface. While each of these changes may actually increase the cost per fitting iteration, we find a compensating decrease in the number of iterations. Further, the wide basin of convergence means that fewer starting points are needed for successful model fitting. Our system runs in real-time on CPU only, which frees up the commonly over-burdened GPU for experience designers. The hand tracker is efficient enough to run on low-power devices such as tablets. We can track up to several meters from the camera to provide a large working volume for interaction, even using the noisy data from current-generation depth cameras. Quantitative assessments on standard datasets show that the new approach exceeds the state of the art in accuracy. Qualitative results take the form of live recordings of a range of interactive experiences enabled by this new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare moment-to-moment appraisals and coping strategies of 4 non-elite and 2 elite male trap shooters during competitions and in particular during periods of competition perceived as critical to performance. Appraisals and coping patterns of trap shooters were captured via verbal reports of thinking provided between sets of shots during major competitions. Verbal reports were coded according to an appraisal and coping typology. Coded data as well as shooting performance data were subjected to a sequential analysis of probabilities of pairs of events. Fewer reports of negative appraisals (NEGAs) and more frequent reports of problem-focused coping (PFC) were observed among both elite athletes compared to non-elite athletes. After making a NEGA, non-elite shooters often progressed to the next target without attempting to cope, whereas elite shooters used both PFC and emotion-focused coping (EFC) before proceeding to the next target. After missing a target, the non-elite athletes used more EFC than expected. These results indicate that elite athletes are more likely to cope with NEGAs than non-elite athletes using a wider variety of coping strategies. Athletes might benefit from increased awareness of the potentially detrimental impact of NEGAs on performance and by integrating coping strategies within preparatory routines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo preliminar teve como finalidade analisar a qualidade da comunicação dos técnicos e auxiliares de ação médica nos exames de Ressonância Magnética, partindo da observação da linguagem verbal e não-verbal. Por analogia com outros domínios, desenvolveu-se um programa de intervenção que incidiu na formação dos técnicos e auxiliares ação médica do Serviço de Radiologia de um hospital público. Recorrendo a uma grelha de observação, avaliou-se o efeito do treino de competências no aumento dos comportamentos adequados durante as Ressonâncias Magnéticas. De uma forma geral, os resultados analisados demonstraram que a formação teve um efeito significativo nos técnicos e nos auxiliares das ressonâncias magnéticas, originando mudanças positivas no local de trabalho, tal como o desenvolvimento de uma relação mais adequada com os doentes que potencie o sucesso do diagnóstico; "Analysis of communication quality of technicians and auxiliaries of MRI radiology service" Abstract: With this preliminary study, we intented to analyze the quality of communication in magnetic resonance imaging exams, starting from the observation of verbal and non-verbal language. By analogy with other areas, it was developed an intervention program focused on the training of technicians and operational assistants of the Radiology service of public hospital. Using a grid note, we assessed the effect of skills training in the increased of appropriate behaviour during the MRIs. In General, the results examined showed that the training had a significant effect on operational assistants and technicians of MRIs, resulting in positive changes in the workplace, such as developing a proper relationship with patients to promote the success of the diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.