850 resultados para Model Identification
Resumo:
An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multiobjective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.
Resumo:
Evolutionary algorithms are suitable to solve damage identification problems in a multi-objective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multi-objective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.
Resumo:
This paper describes a representation of the legal framework in the air transport passenger's rights domain and the foremost incidents that trigger the top of consumer complaints ranking in the EU. It comprises the development of a small network of three ontologies, formalisation of scenarios, specification of properties and identification of relations. The approach is illustrated by means of a case study based in the context of a real life cancelled flight incident. This is part of an intended support-system that aims to provide both consumers and companies with relevant legal information to enhance the decision-making process.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.
A simplified spectral approachfor impedance-based damage identification of frp-strengthened rc beams
Resumo:
Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.
Resumo:
La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.
Resumo:
Con esta tesis doctoral se pretende elaborar un modelo de Certificado de Calidad Cinegética independiente, de adhesión voluntaria y aplicable a todo tipo de espacios cinegéticos, de forma que posteriormente pueda convertirse en una metodología que sea empleada como instrumento válido de medición de la Calidad Cinegética y normalizada a través de una familia de Normas aprobadas por un organismo de normalización reconocido a nivel nacional o internacional. En primer lugar, se procedió a la realización de un riguroso y exhaustivo estudio de justificación siguiendo la metodología propuesta por la Norma UNE 66172:2003 IN, Directrices para la justificación y desarrollo de sistemas de gestión (equivalente a la Norma Internacional GUIA ISO/IEC 72:2001). A continuación, se procedió a la identificación y desarrollo de los parámetros de Ordenación Cinegética comunes a cualquier espacio cinegético en España y a la conceptualización de la Calidad Cinegética. Finalmente, se desarrolló un modelo estructurado en nueve Criterios y treinta y cuatro Indicadores de Calidad Cinegética, y un proyecto de familia de Normas para la Certificación de la Calidad Cinegética. ABSTRACT This doctoral thesis aims to produce a model of Hunting Quality Certificate independent, of voluntary adherence and applicable to all types of hunting areas, so that later it can become a methodology to be used as a valid instrument for measuring Hunting Quality and standardized through a family of standards approved by an organization of standardization recognized at a national or an international level. First, we proceeded to carry out a rigorous and comprehensive justification study following the methodology proposed by the UNE 66172: 2003 IN, Guidelines for the justification and development of management systems standards (equivalent to the International Standard GUIA ISO / IEC 72: 2001). Then, we proceeded to the identification and development of Hunting Management parameters common to any hunting area in Spain and the conceptualization of Hunting Quality. Finally, a model structured into nine Criteria and thirty-four Indicators of Hunting Quality and a draft of a family of standards for Hunting Quality Certification were developed.
Resumo:
The wavelet transform and Lipschitz exponent perform well in detecting signal singularity.With the bridge crack damage modeled as rotational springs based on fracture mechanics, the deflection time history of the beam under the moving load is determined with a numerical method. The continuous wavelet transformation (CWT) is applied to the deflection of the beam to identify the location of the damage, and the Lipschitz exponent is used to evaluate the damage degree. The influence of different damage degrees,multiple damage, different sensor locations, load velocity and load magnitude are studied.Besides, the feasibility of this method is verified by a model experiment.
Resumo:
Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.
Resumo:
Acknowledgment This research is supported by an award made by the RCUK Digital Economy program to the University of Aberdeen’s dot.rural Digital Economy Hub (ref. EP/G066051/1).
Resumo:
Two features make the tooth an excellent model in the study of evolutionary innovations: the relative simplicity of its structure and the fact that the major tooth-forming genes have been identified in eutherian mammals. To understand the nature of the innovation at the molecular level, it is necessary to identify the homologs of tooth-forming genes in other vertebrates. As a first step toward this goal, homologs of the eutherian amelogenin gene have been cloned and characterized in selected species of monotremes (platypus and echidna), reptiles (caiman), and amphibians (African clawed toad). Comparisons of the homologs reveal that the amelogenin gene evolves quickly in the repeat region, in which numerous insertions and deletions have obliterated any similarity among the genes, and slowly in other regions. The gene organization, the distribution of hydrophobic and hydrophilic segments in the encoded protein, and several other features have been conserved throughout the evolution of the tetrapod amelogenin gene. Clones corresponding to one locus only were found in caiman, whereas the clawed toad possesses at least two amelogenin-encoding loci.
Resumo:
Caenorhabditis elegans should soon be the first multicellular organism whose complete genomic sequence has been determined. This achievement provides a unique opportunity for a comprehensive assessment of the signal transduction molecules required for the existence of a multicellular animal. Although the worm C. elegans may not much resemble humans, the molecules that regulate signal transduction in these two organisms prove to be quite similar. We focus here on the content and diversity of protein kinases present in worms, together with an assessment of other classes of proteins that regulate protein phosphorylation. By systematic analysis of the 19,099 predicted C. elegans proteins, and thorough analysis of the finished and unfinished genomic sequences, we have identified 411 full length protein kinases and 21 partial kinase fragments. We also describe 82 additional proteins that are predicted to be structurally similar to conventional protein kinases even though they share minimal primary sequence identity. Finally, the richness of phosphorylation-dependent signaling pathways in worms is further supported with the identification of 185 protein phosphatases and 128 phosphoprotein-binding domains (SH2, PTB, STYX, SBF, 14-3-3, FHA, and WW) in the worm genome.