908 resultados para Migration of solutes
Resumo:
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
Computer simulation of ordering and dynamics in liquid crystals in the bulk and close to the surface
Resumo:
The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of MaierSaupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystalsmectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CBvacuum, finding a homeotropic orientation of the nematic at this interface.
Resumo:
The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.
Resumo:
For the safety assessments of nuclear waste repositories, the possible migration of the radiotoxic waste into environment must be considered. Since plutonium is the major contribution at the radiotoxicity of spent nuclear waste, it requires special care with respect to its mobilization into the groundwater. Plutonium has one of the most complicated chemistry of all elements. It can coexist in 4 oxidation states parallel in one solution. In this work is shown that in the presence of humic substances it is reduced to the Pu(III) and Pu(IV). This work has the focus on the interaction of Pu(III) with natural occurring compounds (humic substances and clay minerals bzw. Kaolinite), while Pu(IV) was studied in a parallel doctoral work by Banik (in preparation). As plutonium is expected under extreme low concentrations in the environment, very sensitive methods are needed to monitor its presence and for its speciation. Resonance ionization mass spectrometry (RIMS), was used for determining the concentration of Pu in environmental samples, with a detection limit of 106- 107 atoms. For the speciation of plutonium CE-ICP-MS was routinely used to monitor the behaviour of Pu in the presence of humic substances. In order to reduce the detection limits of the speciation methods, the coupling of CE to RIMS was proposed. The first steps have shown that this can be a powerful tool for studies of pu under environmental conditions. Further, the first steps in the coupling of two parallel working detectors (DAD and ICP_MS ) to CE was performed, for the enabling a precise study of the complexation constants of plutonium with humic substances. The redox stabilization of Pu(III) was studied and it was determined that NH2OHHCl can maintain Pu(III) in the reduced form up to pH 5.5 – 6. The complexation constants of Pu(III) with Aldrich humic acid (AHA) were determined at pH 3 and 4. the logß = 6.2 – 6.8 found for these experiments was comparable with the literature. The sorption of Pu(III) onto kaolinite was studied in batch experiments and it was determine dthat the pH edge was at pH ~ 5.5. The speciation of plutonium on the surface of kaolinite was studied by EXAFS/XANES. It was determined that the sorbed species was Pu(IV). The influence of AHA on the sorption of Pu(III) onto kaolinite was also investigated. It was determined that at pH < 5 the adsorption is enhanced by the presence of AHA (25 mg/L), while at pH > 6 the adsorption is strongly impaired (depending also on the adding sequence of the components), leading to a mobilization of plutonium in solution.
Resumo:
The interaction between disciplines in the study of human population history is of primary importance, profiting from the biological and cultural characteristics of humankind. In fact, data from genetics, linguistics, archaeology and cultural anthropology can be combined to allow for a broader research perspective. This multidisciplinary approach is here applied to the study of the prehistory of sub-Saharan African populations: in this continent, where Homo sapiens originally started his evolution and diversification, the understanding of the patterns of human variation has a crucial relevance. For this dissertation, molecular data is interpreted and complemented with a major contribution from linguistics: linguistic data are compared to the genetic data and the research questions are contextualized within a linguistic perspective. In the four articles proposed, we analyze Y chromosome SNPs and STRs profiles and full mtDNA genomes on a representative number of samples to investigate key questions of African human variability. Some of these questions address i) the amount of genetic variation on a continental scale and the effects of the widespread migration of Bantu speakers, ii) the extent of ancient population structure, which has been lost in present day populations, iii) the colonization of the southern edge of the continent together with the degree of population contact/replacement, and iv) the prehistory of the diverse Khoisan ethnolinguistic groups, who were traditionally understudied despite representing one of the most ancient divergences of modern human phylogeny. Our results uncover a deep level of genetic structure within the continent and a multilayered pattern of contact between populations. These case studies represent a valuable contribution to the debate on our prehistory and open up further research threads.
Resumo:
Für die Entwicklung des zerebralen Kortex ist die radiale Migration von Neuronen von elementarer Bedeutung. Für diese radiale Migration sind extrazelluläre Signale, die mit den Neuronen interagieren und eine Umgestaltung des Zytoskeletts vermitteln, notwendig. Zu den extrazellulären Signalen gehört auch der Neurotransmitter GABA, der über Depolarisation der Neurone einen Ca2+-Einstrom vermittelt und dadurch die Modulation der Migration über Ca2+-abhängige Signalwege ermöglicht. Auch von Taurin ist bekannt, dass es die neuronale Migration beeinflusst. Frühere Studien zeigten, dass die Depolarisation von GABAA-Rezeptoren durch GABA zu einem Migrationsstop führt, wohingegen Picrotoxin-sensitive Rezeptoren die Migration von der Ventrikulären Zone in die Intermediäre Zone des pränatalen Kortex vermitteln. Obwohl zu den Picrotoxin-sensitiven Rezeptoren GABAA-, GABAC- und bestimmte Glyzinrezeptoren gehören, wurde die Rolle von GABAC- und Glyzinrezeptoren während der radialen Migration nie überprüft. Ziel dieser Dissertation war deshalb, den Einfluss von GABAC- und Glyzinrezeptoren auf die radiale Migration zu untersuchen. Unter Verwendung von Migrationsanalysen, Fluoreszenzmessungen, molekularbiologischen und histologischen Methoden wurde gezeigt, dass GABAC-Rezeptoren im unteren Bereiche des präfrontalen Kortex exprimiert werden, ihre Aktivierung durch GABA in der Intermediären Zone zu einer Depolarisation führt, dass GABAC-Rezeptoren die Migration fördern und dieser Effekt über den migrationsstoppenden Effekt der GABAA-Rezeptoren dominiert. Durch Aktivierung der Glyzinrezeptoren fördert Taurin die Migration.
Resumo:
Die Bildung von lokalen Rezidiven wird bei Glioblastomen vor allem durch das stark infiltrierende Wachstum gefördert. Die Rolle der angewendeten Therapieverfahren bei der Induktion der Zellmotilität ist noch weitgehend unklar. Im Rahmen dieser Dissertation wurde daher in vitro die Wirkung der Photonen- und Schwerionenstrahlung auf die Migration von humanen Glioblastomzelllinien sowie auf EGFR-gekoppelte, migrationsregulierende Signalmoleküle untersucht. Gezeigt werden konnte, dass die EGF-induzierte Stimulierung des EGFR über den PI3K und MAPK Signalweg an der Regulation der Zellmigration beteiligt ist. Hinsichtlich des Verhaltens nach Bestrahlung wurden Zelllinien- und Strahlen-spezifische Unterschiede beobachtet. Die Photonenstrahlung führte in U87 Zellen zu einer Aktivierung des EGFR sowie zur Steigerung der Migration nach klinisch relevanten Dosen. Versuche mit einem EGFR spezifischen Inhibitor bestätigten die funktionelle Verknüpfung von Strahlen-induzierter Aktivierung des EGFR und Strahlen-induzierter Migrationssteigerung. Demgegenüber wurden nach Bestrahlung mit Kohlenstoffionen eine Hemmung der Zellmigration sowie keine gesteigerte Aktivität des EGFR festgestellt. Die erhaltenen in vitro Ergebnisse geben Hinweise auf ein in Glioblastomen mögliches erhöhtes Risiko einer Rezidivbildung nach einer konventionellen Radiotherapie mit Photonen. Bei der modernen Schwerionentherapie kann dieses Risiko aufgrund der Strahlen-vermittelten Migrationshemmung weitestgehend ausgeschlossen werden. Sollte sich die Strahlen-induzierte Migrationssteigerung in vivo bestätigen, wäre es sinnvoll den Einsatz von Migrationsinhibitoren als Begleittherapie zur Bestrahlung zu testen.
Resumo:
Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn
Resumo:
Im Rahmen dieser Arbeit wurden Signalwege untersucht, die an der Migration der embryona-len peripheren Gliazellen (ePG) beteiligt sind. Der Fokus lag dabei auf Myoblast city (Mbc). Zunächst wurden dazu unterschiedliche mbc Mutanten analysiert, bei denen es zu starken glialen Migrationsdefekten kommt. Um die auftretenden Phänotypen quantitativ zu analysieren, wurde eine Methode entwickelt um die Position der Pionierglia ePG9 zu bestimmen. Dies ermöglicht es, auch sehr subtile gliale Migrationsphänotypen zu detektieren. Durch knock-down Experimente konnte gezeigt werden, dass Mbc eine zellautonome Rolle bei der glialen Migration spielt. Besonders interessant ist die Tatsache, dass während der Migration der ePG eine alternativ gespleißte Isoform benötigt wird, die bisher kaum untersucht wurde. Durch Strukturvorhersagen konnte gezeigt werden, dass sich der Bereich in dem sich die beiden Isoformen unterscheiden, in einer Region liegt, die sich zu HEAT-repeats faltet. Mbc-PB scheint somit über einen Bereich zu verfügen, der im Vergleich zu Mbc-PA, zusätzliche Interaktionen erlaubt. Zudem scheint es mehrere Phosphorylierungsstellen zu geben, die für die Inaktivierung von Mbc-PB notwendig sind. Die Kinase Wallenda konnte als Kandidat identifiziert werden, der für die Phosphorylierung von Mbc-PB verantwortlich ist. Weitere Experimente zeigten eine einen zellautonomen Einfluss von Mbc-PB auf ePG7, die indirekt die Migration der Pionierglia ePG9 beeinflusst.
Resumo:
Objective: Central to the process of osseointegration is the recruitment of mesenchymal progenitor cells to the healing site, their proliferation and differentiation to bone synthesising osteoblasts. The process is under the control of pro-inflammatory cytokines and growth factors. The aim of this study was to monitor these key stages of osseointegration and the signalling milieu during bone healing around implants placed in healthy and diabetic bone. Methods: Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats. Mandibles 1-12 weeks post-insertion of the implant were examined by histochemistry and immunocytochemistry to localise the presence of Stro-1- positive mesenchymal progenitor cells, proliferating cellular nuclear antigen proliferative cells, osteopontin and osteocalcin, macrophages, pro-inflammatory cytokines interleukin (IL)-1 , IL-6, tumour necrosis factor (TNF)- and tumour growth factor (TGF)- 1. Image analysis provided a semi-quantification of positively expressing cells. Results: Histological staining identified a delay in the formation of mineralised bone around implants placed in diabetic animals. Within the diabetic bone, the migration of Stro-1 mesenchymal cells in the healing tissue appeared to be unaffected. However, in the diabetic healing bone, the onset of cell proliferation and osteoblast differentiation were delayed and subsequently prolonged compared with normal bone. Similar patterns of change were observed in diabetic bone for the presence of IL-1 , TNF- , macrophages and TGF- 1. Conclusion: The observed alterations in the extracellular presence of pro-inflammatory cytokines, macrophages and growth factors within diabetic tissues that correlate to changes in the signalling milieu, may affect the proliferation and differentiation of mesenchymal progenitor cells in the osseointegration process. To cite this article: Colombo JS, Balani D, Sloan AJ, St Crean J, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats Clin. Oral Impl. Res22, 2011; 578-586 doi: 10.1111/j.1600-0501.2010.01992.x.
Resumo:
Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.
Resumo:
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.
Resumo:
Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the "yeast locasome" as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes.
Resumo:
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
Resumo:
Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.