951 resultados para Microwave hydrothermal synthesis
Resumo:
Microwave plasma driven chemical vapour deposition was used to synthesize graphene nanosheets from a mixture of acetylene and hydrogen gas molecules. In this plasma, acetylene decomposes to carbon atoms that form nanostructures in the outlet plasma stream and get deposited on the substrate. The GNS consists of a few layers of graphene aligned vertically to the substrate. Graphene layers have been confirmed by high-resolution transmission electron microscopy, and Raman spectral studies were conducted to observe the defective nature of the sample. The growth of nanosheets in a vertical direction is assumed to be due to the effect of electric field and from the difference in the deposition rate in the axial and parallel directions. These vertical graphene sheets are attractive for various applications in energy storage and sensors.
Resumo:
Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.
Resumo:
Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.
Resumo:
A new crystal of aluminophosphate, AIPO(4)(.)H(2)O, is synthesized from two-batch aqueous solution under hydrothermal conditions. Three types of the crystal habits, i.e. the tetragonal double pyramid, the tetragonal prism and the plate-type tetragonal prism, are found from batch-A solution. Two types of the crystal habits, i.e. the hexagonal pyramid and the strip-type tetragonal prism, are found from batch-B solution. The change of crystal morphology is originated from the fluctuation of the synthesis conditions, such as the supersaturation, the temperature and the impurity content. It causes change of the step energies, the defect density and the step roughness, and further, change of the growth rates. Since the crystal morphology is sensitive to the mass transport mechanism, the crystal habits could be changed under the microgravity.
Resumo:
40 p. : il.
Resumo:
[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.
Resumo:
We report the synthesis of multiwalled carbon nanotubes (MWCNTs) encapsulated with Co/Pd magnetic and nonmagnetic multi-metal nanowires using Co and Pd thin-layers deposited on Si substrate by microwave plasma enhanced chemical vapor deposition using a bias-enhanced growth method. Detailed structural and compositional investigations of these metal nanowires inside MWCNTs were carried out by scanning electron microscopy and transmission electron microscopy to elucidate the growth mechanisms. Energy dispersive X-ray spectroscopy revealed that MWCNTs were encapsulated with Co and Pd nanowires, separately, at the tube top and the bottom of Co nanowire, respectively. The face-centered-cubic (fcc) structure of Co nanowires was confirmed by a selected area diffraction pattern. We proposed a fruitful description for the encapsulating mechanisms of both Co and Pd multi-metal nanowires. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS nanorods about 100 nm in diameter and 400 nm in length were synthesized via a hydrothermal route in toluene and dimethylsulfoxide solution. By blending the PbS nanorods with the MDMO-PPV as the active layer, bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT PSS)/MDMO-PPV PbS nanorods/Al structure were fabricated in a N-2 filled glove box, Current density-voltage characterization of the devices showed that the solar cells with PbS nanorods hybrid with MDMO-PPV as active layer were better in performance than the devices with the polymer only. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nanoporous VSB-5 nickel phosphate molecular sieves with relatively well controllable sizes and morphology of microspheres assembled from nanorods were synthesized at 140 degrees C over a short time in the presence of hexamethylenetetramine (HMT) by a facile hydrothermal method. The pH value, reaction time, and ratio of HMT to NaHPO2-H2O crucially influence the morphology and quality of the final products.
Resumo:
GdF3:Er3+,Yb-3 with Er3+ ion of 3% and Yb3+ ion concentration of 10%, 20% have been prepared by a hydrothermal method. The results of XRD show that all the samples are of an orthorhombic structure. The average crystallite sizes estimated by Scherrer formula are 28 and 26 nm for Gd0.87Yb0.10Er0.03F3 and Gd0.77Yb0.20Er0.03F3, respectively. The Upconversion luminescence spectra of the samples have been studied under 980 run laser excitation. The results show that the green and red upconversion emission can be attributed to the H-2(11/2),S-4(3/2) -> 4I(15/2) and 4F(9/2) -> 4I(15/2) transitions of Er3+, respectively.
Resumo:
Ilmenite-type (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) was synthesized by a modified sol-gel route including the Pechini process via two-step heat treatments. The thermal stability of (Zn1-xCdx)TiO3 depended on the amount of cadmium content. The as-synthesized (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) showed higher thermal stability than that of ZnTiO3. The variation of the dielectric constant of all synthesized (Zn1-xCdx)TiO3 samples for all measurement frequencies showed a similar tendency.
Resumo:
CdS nanoparticles were successfully prepared by polyol method with PVP-K30 as a surfactant. The microstructure, size and morphology of the products were investigated in detail by XRD, TEM and SEM. The results indicate that uniform CdS nanospheres were achieved. Photoluminescence properties of the resulted nanoparticles (S1 and S3) were investigated, and the results indicate that the CdS nanoparticles could be used as a potential blue light emitting material.
Resumo:
Ytterbium fluoride compounds with different crystal phases and morphologies, such as beta-NaYbF4 hexagonal microdisks, microprisms, microtubes, and alpha-NaYbF4 submicrospheres as well as YbF3 octahedra, have been synthesized via a facile hydrothermal route. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra were used to characterize the samples.
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
One-dimensional La(OH)(3) nanocrystals with multiform morphologies have been successfully synthesized by a facile bydrothermal process without using any surfactant, catalyst, or template. It can be found that the pH values of the initial solutions and the alkaline sources play a crucial role in controlling the morphologies of the products. The possible formation process of the 1D samples was investigated in detail, Furthermore, the as-prepared Tb3+-doped La(OH)(3) samples show a strong green emission corresponding to D-5(4)-F-7(5) transition of the Tb3+ ions under ultraviolet or low-voltage excitation.