832 resultados para Micro parallel kinematic manipulator
Resumo:
Myocardial ischemia, as well as the induction agents used in anesthesia, may cause corrected QT interval (QTc) prolongation. The objective of this randomized, double-blind trial was to determine the effects of high- vs conventional-dose bolus rocuronium on QTc duration and the incidence of dysrhythmias following anesthesia induction and intubation. Fifty patients about to undergo coronary artery surgery were randomly allocated to receive conventional-dose (0.6 mg/kg, group C, n=25) or high-dose (1.2 mg/kg, group H, n=25) rocuronium after induction with etomidate and fentanyl. QTc, heart rate, and mean arterial pressure were recorded before induction (T0), after induction (T1), after rocuronium (just before laryngoscopy; T2), 2 min after intubation (T3), and 5 min after intubation (T4). The occurrence of dysrhythmias was recorded. In both groups, QTc was significantly longer at T3 than at baseline [475 vs 429 ms in group C (P=0.001), and 459 vs 434 ms in group H (P=0.005)]. The incidence of dysrhythmias in group C (28%) and in group H (24%) was similar. The QTc after high-dose rocuronium was not significantly longer than after conventional-dose rocuronium in patients about to undergo coronary artery surgery who were induced with etomidate and fentanyl. In both groups, compared with baseline, QTc was most prolonged at 2 min after intubation, suggesting that QTc prolongation may be due to the nociceptive stimulus of intubation.
Resumo:
Neoadjuvant chemotherapy has practical and theoretical advantages over adjuvant chemotherapy strategy in breast cancer (BC) management. Moreover, metronomic delivery has a more favorable toxicity profile. The present study examined the feasibility of neoadjuvant metronomic chemotherapy in two cohorts [HER2+ (TraQme) and HER2− (TAME)] of locally advanced BC. Twenty patients were prospectively enrolled (TraQme, n=9; TAME, n=11). Both cohorts received weekly paclitaxel at 100 mg/m2 during 8 weeks followed by weekly doxorubicin at 24 mg/m2 for 9 weeks in combination with oral cyclophosphamide at 100 mg/day (fixed dose). The HER2+ cohort received weekly trastuzumab. The study was interrupted because of safety issues. Thirty-six percent of patients in the TAME cohort and all patients from the TraQme cohort had stage III BC. Of note, 33% from the TraQme cohort and 66% from the TAME cohort displayed hormone receptor positivity in tumor tissue. The pathological complete response rates were 55% and 18% among patients enrolled in the TraQme and TAME cohorts, respectively. Patients in the TraQme cohort had more advanced BC stages at diagnosis, higher-grade pathological classification, and more tumors lacking hormone receptor expression, compared to the TAME cohort. The toxicity profile was also different. Two patients in the TraQme cohort developed pneumonitis, and in the TAME cohort we observed more hematological toxicity and hand-foot syndrome. The neoadjuvant metronomic chemotherapy regimen evaluated in this trial was highly effective in achieving a tumor response, especially in the HER2+ cohort. Pneumonitis was a serious, unexpected adverse event observed in this group. Further larger and randomized trials are warranted to evaluate the association between metronomic chemotherapy and trastuzumab treatment.
Resumo:
The whole research of the current Master Thesis project is related to Big Data transfer over Parallel Data Link and my main objective is to assist the Saint-Petersburg National Research University ITMO research team to accomplish this project and apply Green IT methods for the data transfer system. The goal of the team is to transfer Big Data by using parallel data links with SDN Openflow approach. My task as a team member was to compare existing data transfer applications in case to verify which results the highest data transfer speed in which occasions and explain the reasons. In the context of this thesis work a comparison between 5 different utilities was done, which including Fast Data Transfer (FDT), BBCP, BBFTP, GridFTP, and FTS3. A number of scripts where developed which consist of creating random binary data to be incompressible to have fair comparison between utilities, execute the Utilities with specified parameters, create log files, results, system parameters, and plot graphs to compare the results. Transferring such an enormous variety of data can take a long time, and hence, the necessity appears to reduce the energy consumption to make them greener. In the context of Green IT approach, our team used Cloud Computing infrastructure called OpenStack. It’s more efficient to allocated specific amount of hardware resources to test different scenarios rather than using the whole resources from our testbed. Testing our implementation with OpenStack infrastructure results that the virtual channel does not consist of any traffic and we can achieve the highest possible throughput. After receiving the final results we are in place to identify which utilities produce faster data transfer in different scenarios with specific TCP parameters and we can use them in real network data links.
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.
Resumo:
Se estudia la estructura micrográfica del grano de seis variedades de avena con la finalidad de su caracterización, para desarrollar parámetros de identificación en alimentos elaborados con la misma y, consecuentemente, determinar su autenticidad, contribuyendo a optimizar la producción, la comercialización y el consumo del cereal y sus derivados. El diseño experimental consistió en el estudio micrográfico de los granos vestidos y desnudos efectuando un análisis morfológico mediante observación con lupa binocular y fotografía, ultraestructural utilizando microscopio electrónico de barrido, micrográfico y micrométrico, empleando el sistema de video microscopia digitalizado y software adecuado. Dada su variabilidad natural, los estudios se efectuaron durante tres temporadas consecutivas sobre muestras cosechadas de variedades procedentes de cultivos de semillas certificadas, y sobre alimentos procesados (avena arrollada y salvado de avena comerciales). Los resultados consistieron en diseños micrográficos, y en valores micrométricos de gránulos de almidón relacionados, además, en modelos matemáticos. En todos los casos se validó estadísticamente. Como parámetros micrográficos de caracterización se seleccionaron las estructuras diferenciales, que revelaron una presencia constante en el vegetal y resistieron los tratamientos tecnológicos, y las características y dimensiones del almidón.
Resumo:
O objetivo deste trabalho foi avaliar o efeito do tratamento térmico sob baixa umidade (TTBU) aplicado por forno micro-ondas sobre as propriedades estruturais e funcionais do amido de batata-doce e compará-las com as propriedades de amido tratado pelo método convencional. O amido extraído dessa raiz foi submetido à modificação física, nas umidades de 25 e 35%, em forno convencional (90 °C/16 horas) e em microondas (35 a 90 °C/1 hora). O tratamento térmico sob baixa umidade resultou em alterações significativas no teor de amilose e em características como a cristalinidade, suscetibilidade enzimática, fator de expansão e propriedades de pasta. Tais variações evidenciam modificações na estrutura granular interna dos amidos, tanto em áreas cristalinas como amorfas do grânulo. As alterações conferidas pelo TTBU foram variáveis com o tipo de tratamento térmico e com o teor de umidade. A umidade das amostras também foi determinante na modificação da maioria das características do amido, como maior digestibilidade enzimática e redução da expansão, menores picos de viscosidade e quebras de viscosidade, independentemente do tipo de tratamento térmico aplicado. Considerando-se o tipo e a intensidade da modificação física do amido tratado pelo método convencional como referência, a utilização da energia de micro-ondas para esse mesmo fim precisa ser melhor estudada.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.
Resumo:
Tesis (Maestría en Ciencias de Ingeniería Eléctrica, con especialidad en Electrónica) U.A.N.L.
Resumo:
Tesis (Maestría en Administración Pública) U.A.N.L.
Resumo:
Tesis (Maestro en Ciencias de la Administración con Especialidad en Producción y Calidad) UANL, 2000
Resumo:
Tesis (Maestría en Contaduría Pública con Especialidad en Finanzas) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias de la Administración con Especialidad en Relaciones Industriales) UANL, 2011.