998 resultados para Micro generation
Resumo:
The so-called < Sandwich Generation > (SG) is characterized by concurrent and competing professional, familial, and informal caregiving workloads. These stressors pose potential health risks. However, the current knowledge about SG characteristics and perceived state of health are insufficient to allow occupational health nurses to develop evidence-based interventions designed for health promotion. We aimed to describe this population and examine the relationships between these coexisting workloads and their perceived health. This study is based on a descriptive, correlational design. Employees of a Swiss public administration completed an electronic questionnaire. Of 844 respondents, 23 % are SG members. Ages of frailed parents or parents-in-law, co-residence with the latters, children still living at home predict that employees could be members of the SG. Perceived physical health status of SG members is rated better than mental health status. The heterogeneity of SG is reflected in three clusters. Finally, physical health score is the only that differs from the other health scores adjusting for clusters and sex. This study provides a foundation for developing preventive interventions targeting the SG.
Resumo:
The aim of this work is to present a new concept, called on-line desorption of dried blood spots (on-line DBS), allowing the direct analysis of a dried blood spot coupled to liquid chromatography mass spectrometry device (LC/MS). The system is based on an inox cell which can receive a blood sample (10 microL) previously spotted on a filter paper. The cell is then integrated into LC/MS system where the analytes are desorbed out of the paper towards a column switching system ensuring the purification and separation of the compounds before their detection on a single quadrupole MS coupled to atmospheric pressure chemical ionisation (APCI) source. The described procedure implies that no pretreatment is necessary in spite the analysis is based on whole blood sample. To ensure the applicability of the concept, saquinavir, imipramine, and verapamil were chosen. Despite the use of a small sampling volume and a single quadrupole detector, on-line DBS allowed the analyses of these three compounds over their therapeutic concentrations from 50 to 500 ng/mL for imipramine and verapamil and from 100 to 1000 ng/mL for saquinavir. Moreover, the method showed good repeatability with relative standard deviation (RSD) lower than 15% based on two levels of concentration (low and high). Function responses were found to be linear over the therapeutic concentration for each compound and were used to determine the concentrations of real patient samples for saquinavir. Comparison of the founded values with those of a validated method used routinely in a reference laboratory showed a good correlation between the two methods. Moreover, good selectivity was observed ensuring that no endogenous or chemical components interfered with the quantitation of the analytes. This work demonstrates the feasibility and applicability of the on-line DBS procedure for bioanalysis.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.
Resumo:
Diagnosis in allergology is facing novel challenges because of the availability not only of purified or recombinant allergens, but also of multitests such as allergen micro-arrays. These new diagnostic opportunities contribute to a better understanding of crossreactivities between respiratory and food allergens. In comparison to current diagnosis based on whole allergen extracts, this novel generation of specific IgE tests is expected to provide better information on the risk of reaction to allergens as well as on its severity. However these new technologies are expensive, and will have to be carefully analyzed in terms of medical usefulness and public health costs.
Resumo:
Antiresorptive agents such as bisphosphonates induce a rapid increase of BMD during the 1st year of treatment and a partial maintenance of bone architecture. Trabecular Bone Score (TBS), a new grey-level texture measurement that can be extracted from the DXA image, correlates with 3D parameters of bone micro-architecture. Aim: To evaluate the longitudinal effect of antiresorptive agents on spine BMD and on site-matched spine microarchitecture as assessed by TBS. Methods: From the BMD database for Province of Manitoba, Canada, we selected women age >50 with paired baseline and follow up spine DXA examinations who had not received any prior HRT or other antiresorptive drug.Women were divided in two subgroups: (1) those not receiving any HRT or antiresorptive drug during follow up (=non-users) and (2) those receiving non-HRT antiresorptive drug during follow up (=users) with high adherence (medication possession ratio >75%) from a provincial pharmacy database system. Lumbar spine TBS was derived by the Bone Disease Unit, University of Lausanne, for each spine DXA examination using anonymized files (blinded from clinical parameters and outcomes). Effects of antiresorptive treatment for users and non-users on TBS and BMD at baseline and during mean 3.7 years follow-up were compared. Results were expressed % change per year. Results: 1150 non-users and 534 users met the inclusion criteria. At baseline, users and non-users had a mean age and BMI of [62.2±7.9 vs 66.1±8.0 years] and [26.3±4.7 vs 24.7±4.0 kg/m²] respectively. Antiresorptive drugs received by users were bisphosphonates (86%), raloxifene (10%) and calcitonin (4%). Significant differences in BMD change and TBS change were seen between users and nonusers during follow-up (p<0.0001). Significant decreases in mean BMD and TBS (−0.36± 0.05% per year; −0.31±0.06% per year) were seen for non-users compared with baseline (p<0.001). A significant increase in mean BMD was seen for users compared with baseline (+1.86±0.0% per year, p<0.0018). TBS of users also increased compared with baseline (+0.20±0.08% per year, p<0.001), but more slowly than BMD. Conclusion: We observed a significant increase in spine BMD and a positive maintenance of bone micro-architecture from TBS with antiresorptive treatment, whereas the treatment naïve group lost both density and micro-architecture. TBS seems to be responsive to treatment and could be suitable for monitoring micro-architecture. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: M.-A. Krieg: None declared, A. Goertzen: None declared, W. Leslie: None declared, D. Hans Consulting fees from Medimaps.
Resumo:
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.
Resumo:
The coupling between topography, waves and currents in the surf zone may selforganize to produce the formation of shore-transverse or shore-oblique sand bars on an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has been shown by previous studies of linear stability analysis, but is now extended to the finite-amplitude regime. To this end, a nonlinear model coupling wave transformation and breaking, a shallow-water equations solver, sediment transport and bed updating is developed. The sediment flux consists of a stirring factor multiplied by the depthaveraged current plus a downslope correction. It is found that the cross-shore profile of the ratio of stirring factor to water depth together with the wave incidence angle primarily determine the shape and the type of bars, either transverse or oblique to the shore. In the latter case, they can open an acute angle against the current (upcurrent oriented) or with the current (down-current oriented). At the initial stages of development, both the intensity of the instability which is responsible for the formation of the bars and the damping due to downslope transport grow at a similar rate with bar amplitude, the former being somewhat stronger. As bars keep on growing, their finite-amplitude shape either enhances downslope transport or weakens the instability mechanism so that an equilibrium between both opposing tendencies occurs, leading to a final saturated amplitude. The overall shape of the saturated bars in plan view is similar to that of the small-amplitude ones. However, the final spacings may be up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller or larger. In the case of alongshore migrating bars, the asymmetry of the longshore sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics with merging and splitting of individual bars sometimes occur. Finally, in the case of shore-normal incidence the rip currents in the troughs between the bars are jet-like while the onshore return flow is wider and weaker as is observed in nature.
Resumo:
The compounds responsible for the colours and decorations in glass and glazed ceramics include: colouring agents (transition metal ions), pigments (micro-and nano-precipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron Radiation micro-X-ray Diffraction has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth dependent composition and crystal structure. Their nature and distribution across the glass/glazes decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro- XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and renaissance tin glazed ceramics from the 10th to the 17th century AD.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Resumo:
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
Resumo:
Prophylactic human papillomavirus (HPV) L1 virus like particle (VLP) vaccines have been shown, in large clinical trials, to be very immunogenic, well-tolerated and highly efficacious against genital disease caused by the vaccine HPV types. However these vaccines, at the present, protect against only two of the 15 oncogenic genital HPV types, they are expensive, delivered by intramuscular injection and require a cold chain. The challenges are to develop cheap, thermo-stable vaccines that can be delivered by non-injectable methods that provide long term (decades) protection at mucosal surfaces to most, if not all, oncogenic HPV types that is as good as the current VLP vaccines. Current approaches include L1 capsomers, L2 protein and peptides, delivery via recombinant L1 bacterial and viral vectors and large-scale VLP production in plants. Rational design and successful development of such vaccines will be based on an understanding of the immune response, and particularly the 'cross talk' between the innate and adaptive responses. This will be central in the development of adjuvants and vaccine formulations that induce the response to provide effective protection.