857 resultados para Mg-al Alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.

Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.

The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.

By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.

Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O sistema estuarino das Ilhas de Tinharé-Boipeba está inserido na região do Baixo Sul baiano (Bahia Brasil), costa nordeste brasileira, e conectam-se com o oceano através de três saídas principais, Morro de São Paulo, Boipeba e Barra dos Carvalhos. Informações relacionadas à presença de metais no sedimento são quase inexistentes para a região. Nestes estuários foram coletadas 40 amostras de sedimento, onde analisou-se a concentração de metais (Al, Cu, Fe, Mn, Pb e Zn) através da extração com água-régia, segundo o protocolo do material de referência BCR-701 (RAURET et al., 2001). Baixas concentrações de metais foram registradas nas proximidades das saídas para o mar e no Canal de Garapuá e Rio Grande. Altas concentrações, porém praticamente dentro dos valores de referência na CONAMA 344/04, foram registradas no Rio Una, na maior parte do Rio Cairu, Rio das Almas, em quase todas as estações, no braço leste do Rio Cairu e na porção intermediária do Rio dos Patos. As concentrações dos metais (mg.kg1) apresentaram valores entre os seguintes intervalos, Al (3,57 x 104 a 3,19 x 102), Cu (1,02 x 102 a 0,35), Fe (4,33 x 104 a 2,05 x 102), Mn (1,44 x 103 a 2,73), Pb (6,67 x 101 a 2,66) e Zn (5,08 x 102 a 3,18). Através da análise estatística ACP (Análise dos Componentes Principais) e dos gráficos de correlação entre a granulometria do sedimento (areia, silte e argila) e os metais, observou-se maiores concentrações de metais com o aumento do percentual de silte e diminuição do percentual de areia. Também se identificou uma forte correlação entre a ocorrência do fósforo e a presença de metais. Acredita-se que a principal espécie química em questão seja o fosfato (PO43 ou P2O5) que é uma base dura, onde a ligação com os metais se dá pelo oxigênio, sendo o caráter iônico relevante. Não foi identificada uma correlação entre a presença de metais e a argila, fato atribuído ao baixo teor dessa granulometria para todas as amostras do estudo e a composição da argila desses estuários

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.

The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El refuerzo de matrices férricascon una fina dispersión de partículas nanométricas permite mejorar la dureza, resistencia mecánica e incluso permitiría mejorar la tenacidad del material al afinar el tamaño de grano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlInGaN quaternary alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). AlInGaN quaternary alloys with different compositions were acquired by changing the Al cell's temperature. The streaky RHEED patterns were observed during AlInGaN quaternary alloys growth. Scanning Electron Microscope (SEM), Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN quaternary alloys grow on the GaN buffer in the layer-by-layer growth mode. When the Al cell's temperature is 920 degrees C, the Al/In ratio in the AlInGaN quaternary alloys is about 4.7, and the AlInGaN can acquire better crystal and optical quality. The X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIN powders were prepared by in-situ synthesis technique. It is a reaction of binary molten Al-Mg alloys with highly pure nitrogen. It was confirmed through thermodynamics calculation that Mg element in Al-Mg alloys can decrease oxygen content in the reacting system. Thus, nitridation reaction can be performed to form AIN. Moreover, an analysis of kinetics shows that the nitridation reaction of Al-Mg alloys can be accelerated and transferred rapidly with the increment of Mg content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature-dependent photoluminescence measurements have been carried out in zinc-blende InGaN epilayers grown on GaAs substrates by metalorganic vapor-phase epitaxy. An anomalous temperature dependence of the peak position of the luminescence band was observed. Considering thermal activation and the transfer of excitons localized at different potential minima, we employed a model to explain the observed behavior. A good agreement between the theory and the experiment is achieved. At high temperatures, the model can be approximated to the band-tail-state emission model proposed by Eliseev et al. [Appl. Phys. Lett. 71, 569 (1997)]. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本研究从二元Mg-Gd体系出发,研究了添加不同稀土元素对Mg-Gd基合金的组织、时效行为和力学性能的影响。优化出多种力学性能优异、加工性能良好和耐热性突出的新型Mg-Gd-RE-Zn-Zr系合金。在探讨Mg-Gd基合金强化机理的同时,提出了强化模型,并进行了定量分析。 在Mg-Gd二元体系中,通过对不同Gd含量的合金组织,时效行为和力学性能的研究,发现Gd不仅可以细化晶粒,还可以细化枝晶。合金中Gd的含量大于8 wt.%开始表现出时效硬化现象,Gd含量超过12wt.%时效硬化效果显著。在二元体系研究结果的基础上,选用Mg-8Gd基合金,研究了不同轻稀土元素LRE(La, Ce和Nd)和重稀土元素HRE (Y, Dy, Ho 和Er)对合金组织和性能的影响。结果表明,轻稀土中Nd的作用效果最好,其次为Ce和La。重稀土中Y和Dy的作用效果较好,其次为Ho和Er。将轻、重稀土综合考虑,在Mg-8Gd-3RE(Nd+Y)-Zr合金中,变化Nd和Y的添加量,发现Nd和Y的添加量分别为1 和2或2和1时,能够明显改善合金的综合力学性能。 研究了Mg-8Gd-2Y-1Nd-0.3Zn和Mg-8Gd-1Dy-0.3Zn压铸合金的组织和性能。研究表明,两种合金的铸造性能好,而且具有优异的抗拉性能和蠕变性能,可以满足在250℃~275℃环境下使用。进一步研究了挤压变形Mg-8Gd-2Y-1Nd-0.3Zn合金。合金成形性能好,抗拉强度和伸长率明显提高,而且改善了合金的高温抗蠕变性能,比压铸合金提高了近一个数量级。 发明了一种新型的分步固溶处理方法——振荡热处理方法,这种方法比传统的T6热处理方法更加有效,振荡热处理的主要作用是改变了凝固过程中析出相的尺寸和分布。 研究了Mg-Gd基合金凝固过程中的相析出和相转变。在合金的凝固过程中,容易生成块状的化学组成为Mg5RE(fcc结构)的共晶相;加入Zn后,凝固中容易出现片状的Mg3RE(14H型)沉淀;时效强化的主要原因是在过饱和固溶体时效过程中析出针状的50 nm~100 nm的Mg15RE3相,它与基体具有半共格的位相关系,能够有效阻止位错滑移。但随着时效时间的延长,针状析出相长大,共格关系被破坏,导致强化作用降低。而对于压铸和挤压变形合金,合金析出相的种类不变,主要的不同是挤压变形合金析出化合物的分布更加均匀,尺寸更小。 开发了高强度耐热Mg-12Gd-4Y-2Nd-0.4Zn-0.6Zr合金,这种合金经过热处理后,力学性能优良,热稳定性突出。在300 ℃的抗拉强度约为300 MPa,400 ℃的抗拉强度在100 MPa以上。本合金流动性能良好,适合于砂型铸造,在具有高温、高强度要求的镁合金制品方面极具潜力。 从金属材料强化原理出发,建立了Mg-Gd基合金的强化模型,并进行了定量分析。结果表明,析出强化是Mg-Gd基合金的主要强化方式,但实际试验值和理论值略有偏差,分析认为主要是由于β'相体积分数的变化区间较宽,且合金制备过程中不可避免地产生一些微观缺陷所致。 采用新型合金制备出了一些工业用品部件,探索了该类合金在机械、汽车和高技术等工业领域中的潜在应用

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].