783 resultados para Merriam, Sharan B.: Philosophical foundations of adult education
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
This dissertation consists of three self-contained papers that are related to two main topics. In particular, the first and third studies focus on labor market modeling, whereas the second essay presents a dynamic international trade setup.rnrnIn Chapter "Expenses on Labor Market Reforms during Transitional Dynamics", we investigate the arising costs of a potential labor market reform from a government point of view. To analyze various effects of unemployment benefits system changes, this chapter develops a dynamic model with heterogeneous employed and unemployed workers.rn rnIn Chapter "Endogenous Markup Distributions", we study how markup distributions adjust when a closed economy opens up. In order to perform this analysis, we first present a closed-economy general-equilibrium industry dynamics model, where firms enter and exit markets, and then extend our analysis to the open-economy case.rn rnIn Chapter "Unemployment in the OECD - Pure Chance or Institutions?", we examine effects of aggregate shocks on the distribution of the unemployment rates in OECD member countries.rn rnIn all three chapters we model systems that behave randomly and operate on stochastic processes. We therefore exploit stochastic calculus that establishes clear methodological links between the chapters.
Resumo:
The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.
Resumo:
A 51-year-old Chinese man presented with gaze-evoked nystagmus, impaired smooth pursuit and vestibular ocular reflex cancellation, and saccadic dysmetria, along with a family history suggestive of late-onset autosomal dominant parkinsonism. MRI revealed abnormalities of the medulla and cervical spinal cord typical of adult-onset Alexander disease, and genetic testing showed homozygosity for the p.D295N polymorphic allele in the gene encoding the glial fibrillary acidic protein. A review of the literature shows that ocular signs are frequent in adult-onset Alexander disease, most commonly gaze-evoked nystagmus, pendular nystagmus, and/or oculopalatal myoclonus, and less commonly ptosis, miosis, and saccadic dysmetria. These signs are consistent with the propensity of adult-onset Alexander disease to cause medullary abnormalities on neuroimaging.
Resumo:
The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.
Resumo:
In this article, we refine a politics of thinking from the margins by exploring a pedagogical model that advances transformative notions of service learning as social justice teaching. Drawing on a recent course we taught involving both incarcerated women and traditional college students, we contend that when communication among differentiated and stratified parties occurs, one possible result is not just a view of the other but also a transformation of the self and other. More specifically, we suggest that an engaged feminist praxis of teaching incarcerated women together with college students helps illuminate the porous nature of fixed markers that purport to reveal our identities (e.g., race and gender), to emplace our bodies (e.g., within institutions, prison gates, and walls), and to specify our locations (e.g., cultural, geographic, socialeconomic). One crucial theoretical insight our work makes clear is that the model of social justice teaching to which we aspired necessitates re-conceptualizing ourselves as students and professors whose subjectivities are necessarily relational and emergent.