723 resultados para Meningitis, Cerebrospinal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Neisseria meningitides represents a major cause of meningitis and sepsis. The meningococcal regulator NadR was previously shown to repress the expression of the Neisserial Adhesin A (NadA) and play a major role in its phase-variation. NadA is a surface exposed protein involved in epithelial cell adhesion and colonization and a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B infection. The NadR mediated repression of NadA is attenuated by 4-HPA, a natural molecule released in human saliva. Results: In this thesis we investigated the global role of NadR during meningogoccal infection, identifying through microarray analysis the NadR regulon. Two distinct types of NadR targets were identified, differing in their promoter architectures and 4HPA responsive activities: type I are induced, while type II are co-repressed in response to the same 4HPA signal. We then investigate the mechanism of regulation of NadR by 4-HPA, generating NadR mutants and identifying classes or residues involved in either NadR DNA binding or 4HPA responsive activities. Finally, we studied the impact of NadR mediated repression of NadA on the vaccine coverage of 4CMenB. A selected MenB strains is not killed by sera from immunized infants when the strain is grown in vitro, however, in an in vivo passive protection model, the same sera protected infant rats from bacteremia. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h post-infection. Conclusions: Our results suggest that NadR coordinates a broad transcriptional response to signals present in the human host, enabling the meningococcus to adapt to the relevant host niche. During infectious disease the effect of the same signal on NadR changes between different targets. In particular NadA expression is induced in vivo, leading to efficient killing of meningococcus by anti-NadA antibodies elicited by the 4CMenB vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is the primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30-76% of the cases of neonatal meningitis. Biofilms are dense aggregates of surface-adherent microorganisms embedded in an exopolysaccharide matrix. Centers for Disease Control and Prevention estimate that 65% of human bacterial infections involve biofilms (Post et al., 2004). In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and/or virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low- and non- biofilm forming strains and reduce ambiguous data interpretation. This protocol was applied to screen the in vitro biofilm formation ability of more than 350 GBS clinical isolates from pregnant women and neonatal infections belonging to different serotype, in relation to media composition and pH. The results showed the enhancement of GBS biofilm formation in acidic condition and identified a subset of isolates belonging to serotypes III and V that forms strong biofilms in these conditions. Interestingly, the best biofilm formers belonged to the serotype III hypervirulent clone ST-17.It was also found that pH 5.0 induces down-regulation of the capsule but that this reduction is not enough by itself to ensure biofilm formation. Moreover, the ability of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm formation and contribute to the biofilm structural stability. Finally, a set of proteins potentially expressed during the GBS in vitro biofilm formation were identified by mass spectrometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host niches during human infection. Both transcriptional and post-transcriptional regulatory networks have been identified as playing a crucial role for bacterial stress responses and virulence. We investigated the N. meningitidis transcriptional landscape both by microarray and by RNA sequencing (RNAseq). Microarray analysis of N. meningitidis grown in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. In particular, we identified a glucose-responsive hexR-like transcriptional regulator in N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of the glucose-responsive regulation, and in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of meningococcus, by targeting a DNA region overlapping putative regulatory sequences. Our results indicate that HexR coordinates the central metabolism of meningococcus in response to the availability of glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing successful bacteremia in a mouse model of infection. In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we describe the identification and initial characterization of a novel sRNA unique to meningococcus, closely associated to genes relevant for the intracellular survival of pathogenic Neisseriae. Taken together, our findings could help unravel the regulation of N. meningitidis adaptation to the host environment and its implications for pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute transverse myelitis (ATM) is a rare disorder (1-8 new cases per million of population per year), with 20% of all cases occurring in patients younger than 18 years of age. Diagnosis requires clinical symptoms and evidence of inflammation within the spinal cord (cerebrospinal fluid and/or magnetic resonance imaging). ATM due to neuroborreliosis typically presents with impressive clinical manifestations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Encephalitis is caused by a variety of conditions, including infections of the brain by a wide range of pathogens. A substantial number of cases of encephalitis defy all attempts at identifying a specific cause. Little is known about the long-term prognosis in patients with encephalitis of unknown aetiology, which complicates their management during the acute illness. To learn more about the prognosis of patients with encephalitis of unknown aetiology, patients in whom no aetiology could be identified were examined in a large, single-centre encephalitis cohort. In addition to analysing the clinical data of the acute illness, surviving patients were assessed by telephone interview a minimum of 2 years after the acute illness by applying a standardized test battery. Of the patients with encephalitis who qualified for inclusion (n = 203), 39 patients (19.2%) had encephalitis of unknown aetiology. The case fatality in these patients was 12.8%. Among the survivors, 53% suffered from various neurological sequelae, most often attention and sensory deficits. Among the features at presentation that were associated with adverse outcome were older age, increased C-reactive protein, coma and a high percentage of polymorphonuclear cells in the cerebrospinal fluid. In conclusion, the outcome in an unselected cohort of patients with encephalitis of unknown aetiology was marked by substantial case fatality and by long-term neurological deficits in approximately one-half of the surviving patients. Certain features on admission predicted an unfavourable outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In patients with HIV-1 infection who are starting combination antiretroviral therapy (ART), the incidence of immune reconstitution inflammatory syndrome (IRIS) is not well defined. We did a meta-analysis to establish the incidence and lethality of the syndrome in patients with a range of previously diagnosed opportunistic infections, and examined the relation between occurrence and the degree of immunodeficiency. Systematic review identified 54 cohort studies of 13 103 patients starting ART, of whom 1699 developed IRIS. We calculated pooled cumulative incidences with 95% credibility intervals (CrI) by Bayesian methods and did a random-effects metaregression to analyse the relation between CD4 cell count and incidence of IRIS. In patients with previously diagnosed AIDS-defining illnesses, IRIS developed in 37.7% (95% CrI 26.6-49.4) of those with cytomegalovirus retinitis, 19.5% (6.7-44.8) of those with cryptococcal meningitis, 15.7% (9.7-24.5) of those with tuberculosis, 16.7% (2.3-50.7) of those with progressive multifocal leukoencephalopathy, and 6.4% (1.2-24.7) of those with Kaposi's sarcoma, and 12.2% (6.8-19.6) of those with herpes zoster. 16.1% (11.1-22.9) of unselected patients starting ART developed any type of IRIS. 4.5% (2.1-8.6) of patients with any type of IRIS died, 3.2% (0.7-9.2) of those with tuberculosis-associated IRIS died, and 20.8% (5.0-52.7) of those with cryptococcal meningitis died. Metaregression analyses showed that the risk of IRIS is associated with CD4 cell count at the start of ART, with a high risk in patients with fewer than 50 cells per microL. Occurrence of IRIS might therefore be reduced by initiation of ART before immunodeficiency becomes advanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Annual syphilis testing was reintroduced in the Swiss HIV Cohort Study (SHCS) in 2004. We prospectively studied occurrence, risk factors, clinical manifestations, diagnostic approaches and treatment of syphilis. Methods: Over a period of 33 months, participants with positive test results for Treponema pallidum hemagglutination assay were studied using the SHCS database and an additional structured case report form. Results: Of 7244 cohort participants, 909 (12.5%) had positive syphilis serology. Among these, 633 had previously been treated and had no current signs or symptoms of syphilis at time of testing. Of 218 patients with newly detected untreated syphilis, 20% reported genitooral contacts as only risk behavior and 60% were asymptomatic. Newly detected syphilis was more frequent among men who have sex with men (MSM) [adjusted odds ratio (OR) 2.8, P < 0.001], in persons reporting casual sexual partners (adjusted OR 2.8, P < 0.001) and in MSM of younger age (P = 0.05). Only 35% of recommended cerebrospinal fluid (CFS) examinations were performed. Neurosyphilis was diagnosed in four neurologically asymptomatic patients; all of them had a Venereal Disease Research Laboratory (VDRL) titer of 1:≥32. Ninety-one percent of the patients responded to treatment with at least a four-fold decline in VDRL titer. Conclusion: Syphilis remains an important coinfection in the SHCS justifying reintroduction of routine screening. Genitooral contact is a significant way of transmission and young MSM are at high risk for syphilis. Current guidelines to rule out neurosyphilis by CSF analysis are inconsistently followed in clinical practice. Serologic treatment response is above 90% in the era of combination antiretroviral therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is a major cause of high morbidity and mortality. The reduced availability of nitric oxide (NO) in blood and cerebrospinal fluid (CSF) is well established as a key mechanism of vasospasm. Systemic administration of glyceryl trinitrate (GTN), an NO donor also known as nitroglycerin, has failed to be established in clinical settings to prevent vasospasm because of its adverse effects, particularly hypotension. The purpose of this study was to analyze the effect of intrathecally administered GTN on vasospasm after experimental SAH in the rabbit basilar artery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reticulate pattern is one of the most important dermatological signs of a pathological process involving the superficial vascular networks. Vascular malformations, such as cutis marmorata congenita telangiectasia and benign forms of livedo reticularis, and sinister conditions, such as meningococcal meningitis or Sneddon's syndrome, can all present with a reticulate pattern. The clinical presentation and morphology is determined by the nature and extent of the underlying pathology and the involvement of a particular vascular network. This review has been divided into four instalments. In the present paper, we discuss the anatomy and physiology of the complex network of vascular structures that support the function of the skin and subcutis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.