990 resultados para Materials science.
Resumo:
Several new Na, Y and Zr substituted derivatives of Ca-0.5 Ti-2(PO4)(3) (CTP) have been synthesized. These derivatives retain the hexagonal structure of the parent (CTP) compound with minor changes in lattice parameters. Linear thermal expansion coefficients (alpha) have been obtained using a high sensitivity dilatometer.
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.
Resumo:
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Geometry and energy of argon clusters confined in zeolite NaCaA are compared with those of free clusters. Results indicate the possible existence of magic numbers among the confined clusters. Spectra obtained from instantaneous normal mode analysis of free and confined clusters give a larger percentage of imaginary frequencies for the latter indicating that the confined cluster atoms populate the saddle points of the potential energy surface significantly. The variation of the percentage of imaginary frequencies with temperature during melting is akin to the variation of other properties. It is shown that confined clusters might exhibit inverse surface melting, unlike medium-to-large-sized free clusters that exhibit surface melting. Configurational-bias Monte Carte (CBMC) simulations of n-alkanes in zeolites Y and A are reported. CBMC method gives reliable estimates of the properties relating to the conformation of molecules. Changes in the conformational properties of n-butane and other longer n-alkanes such as n-hexane and n-heptane when they are confined in different zeolites are presented. The changes in the conformational properties of n-butane and n-hexane with temperature and concentration is discussed. In general, in zeolite Y as well as A, there is significant enhancement of the gauche population as compared to the pure unconfined fluid.
Resumo:
A simplified structural model to study the ionic transport in silver based glasses has been formulated. The diffusion of silver ion under the influence of coulombic interactions of mobile cation and anions has been studied. Monte Carlo simulations of silver ion hopping in glass have suggested two different kinds of population of silver ions. We discuss the results of variation in diffusion constant with dopant (AgI) concentration using the diffusion path model. (C) 1997 Elsevier-Science S.A.
Resumo:
Rapid solidification of a ternary Al-Cu-Zr alloy results in a nanocomposite microstructure. In this study, melt spinning a Al82Cu15Zr3 alloy has resulted in the combined occurrence of, (a) 0.5 mu m sized grains of Al solid solution and (b) fine grains (10-20 nm) of intermetallic Al2Cu (theta) and alpha-Al, along side each other. The larger alpha-Al grains contain nanometric GP zones, with the Zr addition resulting in a grain refinement. In the other type of microstructure Zr promotes simultaneous nucleation of nanosized grains of the two equilibrium phases, Al2Cu and alpha-Al. Both these lead to a very high hardness of similar to 540 VHN for this alloy and can be used as a candidate for a high strength alloy with good ductility at a low strain rate.
Resumo:
Devitrification of spray pyrolysed, amorphous ZrO2-Al2O3 solid solution produces nanocrystalline microstructures (grain sizes 10-20 nm). In this study, spray pyrolysed amorphous ZrO2-40 mol% Al2O3 powder displayed good sinterability during decomposition, after spraying, of the nitrate precursors up to 1023K. Hot pressing of fully pyrolysed, pre-sintered (more than 70% dense) pellets at 923K and 750 MPa produced an amorphous pellet with less than 2% porosity. The results indicate the possibility of producing dense, amorphous pellets that can be heat treated further to produce nanocrystalline microstructures conducive for superplasticity.
Resumo:
CuO nanowires are synthesized by heating Cu foil, rod and grid in ambient without employing a catalyst or gas flow at temperatures ranging from 400 to 800 degrees C for a duration of 1-12 h. Scanning electron microscopy (SEM) investigation reveals the formation of nanowires. The structure, morphology and phase of the as-synthesized nanowires are analyzed by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). It is found that these nanowires are composed of CuO phase and the underlying film is of Cu2O. A systematic study is carried out to find the possibilities for the transformation of one phase to another completely. A possible growth mechanism for the nanowires is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A distinctive characteristic of silver in oxygen incorporation of oxide thin films during pulsed laser ablation has been discovered. Optical emission spectroscopy studies of laser-induced plume of Ag-target indicates the presence of AgO species whose concentration increases with an increase in oxygen partial pressure. The formation of AgO in laser-plume has been found to be very useful for the realization of high temperature superconducting YBa2Cu3O7-delta (YBCO) and giant magnetoresistive La0.7MnO3-delta (LMO) thin films with dramatically superior quality if the target materials contained a small amount of silver. The improvement in the quality of these films is brought about by the supply of atomic oxygen to oxide lattices during their formation. This becomes possible due to the fact that Ag, after it is ablated with other constituent materials in the target, gets moderately oxidized in an oxygen atmosphere and the oxidized species dissociate back into Ag and nascent O at the substrate surface. The nascent oxygen is very highly reactive and is easily assimilated into the lattice of these compounds. (C) 1997 Elsevier Science S.A.
Resumo:
The humidity, heat flux and mass flow sensing capability of n-BaTiO3 and its solid solutions were evaluated based on their dissipation characteristics. The cubic/tetragonal phase content of the ceramics seem to play an important role in their sensitivity towards the measurand. The humidity-sensitive characteristics of these perovskites were studied with respect to different moisture sensitive coating materials. The sensor was also used to determine the heat of hydration during the curing process of cements and the mass flow rate of the gases. For all these applications, suitable operating points have been fixed from the highly non-linear I-V characteristics with the retention of good stability and high sensitivity. (C) 1997 Elsevier Science S.A.
Resumo:
The study of interfaces in quasicrystalline alloys is relatively new. Apart From the change in orientation, symmetry and chemistry which can occur across homophase and heterophase boundaries in crystalline materials, we have the additional, exciting possibility of an interface between quasicrystalline and its rational approximant. High resolution electron microscopy is a powerful technique to study the structural details of such interfaces. We report the results of a HREM study of the interface between the icosahedral phase and the related Al13Fe4 type monoclinic phase in melt spun and annealed Al65Cu20Fe15 alloy.
Resumo:
The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.