542 resultados para Management -- New Zealand -- Congresses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits at the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51±0.24 Ma and 23.38±0.24 Ma (2sigma). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17±0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have overlapped with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic concentration and lamina thickness indicate a decrease in erosional input and increase in diatom productivity throughout the depositional period, suggesting a long-term (tens of thousands of years) climatic change in New Zealand in the latest Oligocene/earliest Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of cores from east of New Zealand have been examined to determine the paleoceanographic history of the late Quaternary in the SW Pacific using planktonic foraminiferal data. Distinct shifts of species can be seen between glacial and interglacial times especially south of Chatham Rise east of South Island. Foraminiferal fragmentation ratios and benthic/planktonic foraminiferal ratios both show increased dissolution during glacials, especially isotope stage 2 to the south of Chatham Rise. The present-day Subtropical Convergence appears to be tied to the Chatham Rise at 44°S, but during glacial times this rise separated cold water to the south from much warmer water to the north, with an associated strong thermal gradient across the rise. We estimate that this gradient could have presented as much as an 8°C temperature change across 4° of latitude during the maximum of the last ice age. There is only weak evidence of the Younger Dryas cool event, but there is a clear climatic optimum between 8 and 6.4 ka with temperatures 1°-2°C higher than the present day. The marine changes compare well with vegetational changes on both South and North Island.