818 resultados para MULTI-RELATIONAL DATA MINING
Resumo:
C3S2E '16 Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering
Resumo:
La intención del proyecto es mostrar las diferentes características que ofrece Oracle en el campo de la minería de datos, con la finalidad de saber si puede ser una plataforma apta para la investigación y la educación en la universidad. En la primera parte del proyecto se estudia la aplicación “Oracle Data Miner” y como, mediante un flujo de trabajo visual e intuitivo, pueden aplicarse las distintas técnicas de minería (clasificación, regresión, clustering y asociación). Para mostrar la ejecución de estas técnicas se han usado dataset procedentes de la universidad de Irvine. Con ello se ha conseguido observar el comportamiento de los distintos algoritmos en situaciones reales. Para cada técnica se expone como evaluar su fiabilidad y como interpretar los resultados que se obtienen a partir de su aplicación. También se muestra la aplicación de las técnicas mediante el uso del lenguaje PL/SQL. Gracias a ello podemos integrar la minería de datos en nuestras aplicaciones de manera sencilla. En la segunda parte del proyecto, se ha elaborado un prototipo de una aplicación que utiliza la minería de datos, en concreto la clasificación para obtener el diagnóstico y la probabilidad de que un tumor de mama sea maligno o benigno, a partir de los resultados de una citología.
Resumo:
Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.
MINING AND VERIFICATION OF TEMPORAL EVENTS WITH APPLICATIONS IN COMPUTER MICRO-ARCHITECTURE RESEARCH
Resumo:
Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior over time, exploring the correlations among their attributes by computing the fractal dimension. Experimental results with climate data streams show that the clusters' quality and compactness can be improved compared to the competing method, leading to the thoughtfulness that attributes correlations cannot be put aside. In fact, the clusters' compactness are 7 to 25 times better using our method. Our framework also proves to be an useful tool to assist meteorologists in understanding the climate behavior along a period of time.
Resumo:
The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.
Resumo:
The effectiveness of higher-order spectral (HOS) phase features in speaker recognition is investigated by comparison with Mel Cepstral features on the same speech data. HOS phase features retain phase information from the Fourier spectrum unlikeMel–frequency Cepstral coefficients (MFCC). Gaussian mixture models are constructed from Mel– Cepstral features and HOS features, respectively, for the same data from various speakers in the Switchboard telephone Speech Corpus. Feature clusters, model parameters and classification performance are analyzed. HOS phase features on their own provide a correct identification rate of about 97% on the chosen subset of the corpus. This is the same level of accuracy as provided by MFCCs. Cluster plots and model parameters are compared to show that HOS phase features can provide complementary information to better discriminate between speakers.