972 resultados para MSM Pep Band
Resumo:
We introduce one trivial but puzzling solar cell structure. It consists of a high bandgap pn junction (top cell) grown on a substrate of lower bandgap. Let us assume, for example, that the bandgap of the top cell is 1.85 eV (Al 0.3Ga 0.7As) and the bandgap of the substrate is 1.42 eV (GaAs). Is the open-circuit of the top cell limited to 1.42 V or to 1.85 V? If the answer is ldquo1.85 Vrdquo we could then make the mind experiment in which we illuminate the cell with 1.5 eV photons (notice these photons would only be absorbed in the substrate). If we admit that these photons can generate photocurrent, then because we have also admitted that the voltage is limited to 1.85 V, it might be possible that the electron-hole pairs generated by these photons were extracted at 1.6 V for example. However, if we do so, the principles of thermodynamics could be violated because we would be extracting more energy from the photon than the energy it initially had. How can we then solve this puzzle?
Resumo:
We investigated the electrical transport properties of ultraheavily Ti-implanted silicon layers subsequently pulsed laser melted (PLM). After PLM, the samples exhibit anomalous electrical behaviour in sheet resistance and Hall mobility measurements, which is associated with the formation of an intermediate band (IB) in the implanted layer. An analytical model that assumes IB formation and a current limitation effect between the implanted layer and the substrate was developed to analyse this anomalous behaviour. This model also describes the behaviour of the function V/Delta V and the electrical function F that can be extracted from the electrical measurements in the bilayer. After chemical etching of the implanted layer, the anomalous electrical behaviour observed in sheet resistance and Hall mobility measurements vanishes, recovering the unimplanted Si behaviour, in agreement with the analytical model. The behaviour of V/Delta V and the electrical function F can also be successfully described in terms of the analytical model in the bilayer structure with the implanted layer entirely stripped.
Resumo:
In the framework of the so-called third generation solar cells, three main concepts have been proposed in order to exceed the limiting efficiency of single-gap solar cells: the hot-carrier solar cell, the impact-ionization or multiple-exciton-generation solar cell, and the intermediate-band solar cell. At first sight, the three concepts are different, but in this paper, we illustrate how all these concepts, including the single-gap solar cell, share a common trunk that we call "core photovoltaic material." We demonstrate that each one of these next-generation concepts differentiates in fact from this trunk depending on the hypotheses that are made about the physical principles governing the electron electrochemical potentials. In the process, we also clarify the differences between electron, phonon, and photon chemical potentials (the three fundamental particles involved in the operation of the solar cell). The in-depth discussion of the physics involved about the operation of these cells also provides new insights about the operation of these cells.
Resumo:
In this study, we present a structural and optoelectronic characterization of high dose Ti implanted Si subsequently pulsed-laser melted (Ti supersaturated Si). Time-of-flight secondary ion mass spectrometry analysis reveals that the theoretical Mott limit has been surpassed after the laser process and transmission electron microscopy images show a good lattice reconstruction. Optical characterization shows strong sub-band gap absorption related to the high Ti concentration. Photoconductivity measurements show that Ti supersaturated Si presents spectral response orders of magnitude higher than unimplanted Si at energies below the band gap. We conclude that the observed below band gap photoconductivity cannot be attributed to structural defects produced by the fabrication processes and suggest that both absorption coefficient of the new material and lifetime of photoexcited carriers have been enhanced due to the presence of a high Ti concentration. This remarkable result proves that Ti supersaturated Si is a promising material for both infrared detectors and high efficiency photovoltaic devices.
Resumo:
The Empiric k·p Hamiltonian method is usually applied to nanostructured semiconductors. In this paper, it is applied to a homogeneous semiconductor in order to check the adequacy of the method. In this case, the solutions of the diagonalized Hamiltonian, as well as the envelope functions, are plane waves. The procedure is applied to the GaAs and the interband absorption coefficients are calculated. They result in reasonable agreement with the measured values, further supporting the adequacy of the Empiric k·p Hamiltonian method.
Resumo:
Defect interaction can take place in CdTe under Te and Bi rich conditions. We demonstrate in this work through first principles calculations, that this phenomenon allows a Jahn Teller distortion to form an isolated half-filled intermediate band in the host semiconductor band-gap. This delocalized energy band supports the experimental deep level reported in the host band-gap of CdTe at a low bismuth concentration. Furthermore, the calculated optical absorption of CdTe:Bi in this work shows a significant subband-gap absorption that also supports the enhancement of the optical absorption found in the previous experimental results.
Resumo:
Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.
Resumo:
In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.
Resumo:
La presente tesis fue ideada con el objetivo principal de fabricar y caracterizar fotodiodos Schottky en capas de ZnMgO y en estructuras de pozo cuántico ZnMgO/ZnO para la detección de luz UV. La elección de este material semiconductor vino motivada por la posibilidad que ofrece de detectar y procesar señales simultáneamente, en un amplio margen de longitudes de onda, al igual que su más directo competidor el GaN. En esta memoria se da en primer lugar una visión general de las propiedades estructurales y ópticas del ZnO, prestando especial atención a su ternario ZnMgO y a las estructuras de pozo cuántico ZnMgO/ZnO. Además, se han desarrollado los conocimientos teóricos necesarios para una mejor compresión y discusión de los resultados alcanzados. En lo que respecta a los resultados de esta memoria, en esencia, estos se dividen en dos bloques. Fotodiodos desarrollados sobre capas delgadas de ZnMgO no-polar, y sobre estructuras de pozo cuántico de ZnMgO/ZnO no-polares y semipolares Fotodiodos de capas delgadas de ZnMgO. Es bien conocido que la adición de Mg a la estructura cristalina del ZnO desplaza el borde de absorción hacia energías mayores en el UV. Se ha aprovechado esto para fabricar fotodiodos Schottky sobre capas de ZnMgO crecidas por MOCVD y MBE, los cuales detecten en un ventana de energías comprendida entre 3.3 a 4.6 eV. Sobre las capas de ZnMgO, con diferentes contenidos de Mg(5.6-18.0 %), crecidas por MOCVD se han fabricado fotodiodos Schottky. Se han estudiado en detalle las curvas corrientevoltaje (I-V). Seguidamente, se ha realizado un análisis de la respuesta espectral bajo polarización inversa. Tanto los valores de responsividad obtenidos como el contraste UV/VIS están claramente aumentados por la presencia de ganancia. Paralelamente, se han realizado medidas de espectroscopia de niveles profundos (DLOS), identificándose la presencia de dos niveles profundos de carácter aceptor. El papel desempeñado por estos en la ganancia ha sido analizado meticulosamente. Se ha demostrado que cuando estos son fotoionizados son responsables directos del gran aumento de la corriente túnel que se produce a través de la barrera Schottky, dando lugar a la presencia de la ganancia observada, que además resulta ser función del flujo de fotones incidente. Para extender el rango detección hasta 4.6 eV se fabricaron fotodiodos sobre capas de ZnMgO de altísima calidad cristalina crecidas por MBE. Sobre estos se ha realizado un riguroso análisis de las curvas I-V y de las curvas capacidad-voltaje (CV), para posteriormente identificar los niveles profundos presentes en el material, mediante la técnica de DLOS. Así mismo se ha medido la respuesta espectral de los fotodetectores, la cual muestra un corte abrupto y un altísimo contraste UV/VIS. Además, se ha demostrado como estos son perfectos candidatos para la detección de luz en la región ciega al Sol. Por otra parte, se han fabricado fotodiodos MSM sobre estas mismas capas. Se han estudiado las principales figuras de mérito de estos, observándose unas corrientes bajas de oscuridad, un contraste UV/VIS de 103, y la presencia de fotocorriente persistente. Fotodiodos Schottky de pozos cuánticos de ZnO/ZnMgO. En el segundo bloque de esta memoria, con el objeto final de clarificar el impacto que tiene el tratamiento del H2O2 sobre las características optoelectrónicas de los dispositivos, se ha realizado un estudio detallado, en el que se han analizado por separado fotodiodos tratados y no tratados con H2O2, fabricados sobre pozos cuánticos de ZnMgO/ZnO. Se ha estudiado la respuesta espectral en ambos casos, observándose la presencia de ganancia en los dos. A través de un análisis meticuloso de las características electrónicas y optoeletrónicas de los fotodiodos, se han identificado dos mecanismos de ganancia internos diferentes en función de que la muestra sea tratada o no-tratada. Se han estudiado fotodetectores sensibles a la polarización de la luz (PSPDs) usando estructuras de pozo cuántico no-polares y semipolares sobre sustratos de zafiro y sustratos de ZnO. En lo que respecta a los PSPDs sobre zafiro, en los cuales el pozo presenta una tensión acumulada en el plano, se ha visto que el borde de absorción se desplaza _E _21 meV con respecto a luz linealmente polarizada perpendicular y paralela al eje-c, midiéndose un contraste (RE || c /RE c)max _ 6. Con respecto a los PSPDs crecidos sobre ZnO, los cuales tienen el pozo relajado, se ha obtenido un 4E _30-40, y 21 meV para las heteroestructuras no-polar y semipolar, respectivamente. Además el máximo contraste de responsividad fue de (RE || c /RE c)max _ 6 . Esta sensibilidad a la polarización de la luz ha sido explicada en términos de las transiciones excitónicas entre la banda de conducción y las tres bandas de valencia. ABSTRACT The main goal of the present thesis is the fabrication and characterization of Schottky photodiodes based on ZnMgO layers and ZnMgO / ZnO quantum wells (QWs) for the UV detection. The decision of choosing this semiconductor was mainly motivated by the possibility it offers of detecting and processing signals simultaneously in a wide range of wavelengths like its main competitor GaN. A general overview about the structural and optical properties of ZnO, ZnMgO layers and ZnMgO/ZnO QWs is given in the first part of this thesis. Besides, it is shown the necessary theoretical knowledge for a better understanding of the discussion presented here. The results of this thesis may be divided in two parts. On the one hand, the first part is based on studying non-polar ZnMgO photodiodes. On the other hand, the second part is focused on the characterization of non-polar and semipolar ZnMgO / ZnO QWs Schottky photodiodes. ZnMgO photodiodes. It is well known that the addition of Mg in the crystal structure of ZnO results in a strong blue-shift of the ZnO band-gap. Taking into account this fact Schottky photodiodes were fabricated on ZnMgO layers grown by MOCVD and MBE. Concerning ZnMgO layers grown by MOCVD, a series of Schottky photodiodes were fabricated, by varying the Mg content from 5.6% to 18 %. Firstly, it has been studied in detail the current-voltage curves. Subsequently, spectral response was analyzed at reverse bias voltage. Both the rejection ratio and the responsivity are shown to be largely enhanced by the presence of an internal gain mechanism. Simultaneously, measurements of deep level optical spectroscopy were carried out, identifying the presence of two acceptor-like deep levels. The role played for these in the gain observed was studied in detail. It has been demonstrated that when these are photoionized cause a large increase in the tunnel current through the Schottky barrier, yielding internal gains that are a function of the incident photon flux. In order to extend the detection range up to 4.6 eV, photodiodes ZnMgO grown by MBE were fabricated. An exhaustive analysis of the both I-V and CV characteristics was performed. Once again, deep levels were identified by using the technique DLOS. Furthermore, the spectral response was measured, observing sharp absorption edges and high UV/VIS rejections ratio. The results obtained have confirmed these photodiodes are excellent candidates for the light detection in the solar-blind region. In addition, MSM photodiodes have also been fabricated on the same layers. The main figures of merit have been studied, showing low dark currents, a large UV/VIS rejection ratio and persistent photocurrent. ZnMgO/ZnO QWs photodiodes. The second part was focused on ZnMgO/ ZnO QWs. In order to clarify the impact of the H2O2 treatment on the performance of the Schottky diodes, a comparative study using treated and untreated ZnMgO/ZnO photodiodes has been carried out. The spectral response in both cases has shown the presence of gain, under reverse bias. Finally, by means of the analysis of electronic and optoelectronic characteristics, two different internal gain mechanisms have been indentified in treated and non-treated material. Light polarization-sensitive UV photodetectors (PSPDs) using non-polar and semipolar ZnMgO/ZnO multiple quantum wells grown both on sapphire and ZnO substrates have been demonstrated. For the PSPDs grown on sapphire with anisotropic biaxial in-plain strain, the responsivity absorption edge shifts by _E _21 meV between light polarized perpendicular and parallel to the c-axis, and the maximum responsivity contrast is (RE || c /RE c)max _ 6 . For the PSPDs grown on ZnO, with strain-free quantum wells, 4E _30-40, and 21 meV for non-polar and semipolar heterostructures, and maximum (R /R||)max _10. for non-polar heterostructure was achieved. These light polarization sensitivities have been explained in terms of the excitonic transitions between the conduction and the three valence bands.
Resumo:
Although everybody should know thatmeasurements are never performed directly onmaterials but on devices, this is not generally true. Devices are physical systems able to exchange energy and thus subject to the laws of physics, which determine the information they provide. Hence, we should not overlook device effects in measurements as we do by assuming naively that photoluminescence (PL) is bulk emission free fromsurface effects. By replacing this unjustified assumption with a propermodel forGaN surface devices, their yellow band PL becomes surface-assisted luminescence that allows for the prediction of the weak electroluminescence recently observed in n-GaN devices when holes are brought to their surfaces.
Resumo:
Within the framework of the third solar cell generation some new ideas to enlarge the spectral response of the solar cells toward the infrared have been proposed. Among them the inclusion of an Intermediate Band (IB) seems to be very promising. This paper will deal with one of the ways to generate the IB namely the deep level center approach. We will discuss not only its existence but also the carriers lifetime recovery which is necessary to obtain the expected increase of the solar cell efficiency.
Resumo:
It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.
Resumo:
Current prototypes of quantum-dot intermediate band solar cells suffer from voltage reduction due to the existence of carrier thermal escape. An enlarged sub-bandgap EL would not only minimize this problem, but would also lead to a bandgap distribution that exploits more efficiently the solar spectrum. In this work we demonstrate InAs/InGaP QD-IBSC prototypes with the following bandgap distribution: EG = 1.88 eV, EH = 1.26 eV and EL > 0.4 eV. We have measured, for the first time in this material, both the interband and intraband transitions by means of photocurrent experiments. The activation energy of the carrier thermal escape in our devices has also been measured. It is found that its value, compared to InAs/GaAs-based prototypes, does not follow the increase in EL. The benefits of using thin AlGaAs barriers before and after the quantum-dot layers are analyzed.
Resumo:
We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ~ 6000 nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable. © 2015 American Physical Society
Resumo:
El trabajo que ha dado lugar a esta Tesis Doctoral se enmarca en la invesitagación en células solares de banda intermedia (IBSCs, por sus siglas en inglés). Se trata de un nuevo concepto de célula solar que ofrece la posibilidad de alcanzar altas eficiencias de conversión fotovoltaica. Hasta ahora, se han demostrado de manera experimental los fundamentos de operación de las IBSCs; sin embargo, esto tan sólo has sido posible en condicines de baja temperatura. El concepto de banda intermedia (IB, por sus siglas en inglés) exige que haya desacoplamiento térmico entre la IB y las bandas de valencia y conducción (VB and CB, respectivamente, por sus siglas en inglés). Los materiales de IB actuales presentan un acoplamiento térmico demasiado fuerte entre la IB y una de las otras dos bandas, lo cual impide el correcto funcionamiento de las IBSCs a temperatura ambiente. En el caso particular de las IBSCs fabricadas con puntos cuánticos (QDs, por sus siglas en inglés) de InAs/GaAs - a día de hoy, la tecnología de IBSC más estudiada - , se produce un rápido intercambio de portadores entre la IB y la CB, por dos motivos: (1) una banda prohibida estrecha (< 0.2 eV) entre la IB y la CB, E^, y (2) la existencia de niveles electrónicos entre ellas. El motivo (1) implica, a su vez, que la máxima eficiencia alcanzable en estos dispositivos es inferior al límite teórico de la IBSC ideal, en la cual E^ = 0.71 eV. En este contexto, nuestro trabajo se centra en el estudio de IBSCs de alto gap (o banda prohibida) fabricadsas con QDs, o lo que es lo mismo, QD-IBSCs de alto gap. Hemos fabricado e investigado experimentalmente los primeros prototipos de QD-IBSC en los que se utiliza AlGaAs o InGaP para albergar QDs de InAs. En ellos demostramos une distribución de gaps mejorada con respecto al caso de InAs/GaAs. En concreto, hemos medido valores de E^ mayores que 0.4 eV. En los prototipos de InAs/AlGaAs, este incremento de E^ viene acompaado de un incremento, en más de 100 meV, de la energía de activación del escape térmico. Además, nuestros dispositivos de InAs/AlGaAs demuestran conversión a la alza de tensión; es decir, la producción de una tensión de circuito abierto mayor que la energía de los fotones (dividida por la carga del electrón) de un haz monocromático incidente, así como la preservación del voltaje a temperaura ambiente bajo iluminación de luz blanca concentrada. Asimismo, analizamos el potencial para detección infrarroja de los materiales de IB. Presentamos un nuevo concepto de fotodetector de infrarrojos, basado en la IB, que hemos llamado: fotodetector de infrarrojos activado ópticamente (OTIP, por sus siglas en inglés). Nuestro novedoso dispositivo se basa en un nuevo pricipio físico que permite que la detección de luz infrarroja sea conmutable (ON y OFF) mediante iluminación externa. Hemos fabricado un OTIP basado en QDs de InAs/AlGaAs con el que demostramos fotodetección, bajo incidencia normal, en el rango 2-6/xm, activada ópticamente por un diodoe emisor de luz de 590 nm. El estudio teórico del mecanismo de detección asistido por la IB en el OTIP nos lleva a poner en cuestión la asunción de quasi-niveles de Fermi planos en la zona de carga del espacio de una célula solar. Apoyados por simuaciones a nivel de dispositivo, demostramos y explicamos por qué esta asunción no es válida en condiciones de corto-circuito e iluminación. También llevamos a cabo estudios experimentales en QD-IBSCs de InAs/AlGaAs con la finalidad de ampliar el conocimiento sobre algunos aspectos de estos dispositivos que no han sido tratados aun. En particular, analizamos el impacto que tiene el uso de capas de disminución de campo (FDLs, por sus siglas en inglés), demostrando su eficiencia para evitar el escape por túnel de portadores desde el QD al material anfitrión. Analizamos la relación existente entre el escape por túnel y la preservación del voltaje, y proponemos las medidas de eficiencia cuántica en función de la tensión como una herramienta útil para evaluar la limitación del voltaje relacionada con el túnel en QD-IBSCs. Además, realizamos medidas de luminiscencia en función de la temperatura en muestras de InAs/GaAs y verificamos que los resltados obtenidos están en coherencia con la separación de los quasi-niveles de Fermi de la IB y la CB a baja temperatura. Con objeto de contribuir a la capacidad de fabricación y caracterización del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM), hemos participado en la instalación y puesta en marcha de un reactor de epitaxia de haz molecular (MBE, por sus siglas en inglés) y el desarrollo de un equipo de caracterización de foto y electroluminiscencia. Utilizando dicho reactor MBE, hemos crecido, y posteriormente caracterizado, la primera QD-IBSC enteramente fabricada en el IES-UPM. ABSTRACT The constituent work of this Thesis is framed in the research on intermediate band solar cells (IBSCs). This concept offers the possibility of achieving devices with high photovoltaic-conversion efficiency. Up to now, the fundamentals of operation of IBSCs have been demonstrated experimentally; however, this has only been possible at low temperatures. The intermediate band (IB) concept demands thermal decoupling between the IB and the valence and conduction bands. Stateof- the-art IB materials exhibit a too strong thermal coupling between the IB and one of the other two bands, which prevents the proper operation of IBSCs at room temperature. In the particular case of InAs/GaAs quantum-dot (QD) IBSCs - as of today, the most widely studied IBSC technology - , there exist fast thermal carrier exchange between the IB and the conduction band (CB), for two reasons: (1) a narrow (< 0.2 eV) energy gap between the IB and the CB, EL, and (2) the existence of multiple electronic levels between them. Reason (1) also implies that maximum achievable efficiency is below the theoretical limit for the ideal IBSC, in which EL = 0.71 eV. In this context, our work focuses on the study of wide-bandgap QD-IBSCs. We have fabricated and experimentally investigated the first QD-IBSC prototypes in which AlGaAs or InGaP is the host material for the InAs QDs. We demonstrate an improved bandgap distribution, compared to the InAs/GaAs case, in our wide-bandgap devices. In particular, we have measured values of EL higher than 0.4 eV. In the case of the AlGaAs prototypes, the increase in EL comes with an increase of more than 100 meV of the activation energy of the thermal carrier escape. In addition, in our InAs/AlGaAs devices, we demonstrate voltage up-conversion; i. e., the production of an open-circuit voltage larger than the photon energy (divided by the electron charge) of the incident monochromatic beam, and the achievement of voltage preservation at room temperature under concentrated white-light illumination. We also analyze the potential of an IB material for infrared detection. We present a IB-based new concept of infrared photodetector that we have called the optically triggered infrared photodetector (OTIP). Our novel device is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. We have fabricated an OTIP based on InAs/AlGaAs QDs with which we demonstrate normal incidence photodetection in the 2-6 /xm range optically triggered by a 590 nm light-emitting diode. The theoretical study of the IB-assisted detection mechanism in the OTIP leads us to questioning the assumption of flat quasi-Fermi levels in the space-charge region of a solar cell. Based on device simulations, we prove and explain why this assumption is not valid under short-circuit and illumination conditions. We perform new experimental studies on InAs/GaAs QD-IBSC prototypes in order to gain knowledge on yet unexplored aspects of the performance of these devices. Specifically, we analyze the impact of the use of field-damping layers, and demonstrate this technique to be efficient for avoiding tunnel carrier escape from the QDs to the host material. We analyze the relationship between tunnel escape and voltage preservation, and propose voltage-dependent quantum efficiency measurements as an useful technique for assessing the tunneling-related limitation to the voltage preservation of QD-IBSC prototypes. Moreover, we perform temperature-dependent luminescence studies on InAs/GaAs samples and verify that the results are consistent with a split of the quasi-Fermi levels for the CB and the IB at low temperature. In order to contribute to the fabrication and characterization capabilities of the Solar Energy Institute of the Universidad Polite´cnica de Madrid (IES-UPM), we have participated in the installation and start-up of an molecular beam epitaxy (MBE) reactor and the development of a photo and electroluminescence characterization set-up. Using the MBE reactor, we have manufactured and characterized the first QD-IBSC fully fabricated at the IES-UPM.