947 resultados para MESH equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

D Liang from Cambridge University explains the shallow water equations and their applications to the dam-break and other steep-fronted flow modeling. They assume that the horizontal scale of the flow is much greater than the vertical scale, which means the flow is restricted within a thin layer, thus the vertical momentum is insignificant and the pressure distribution is hydrostatic. The left hand sides of the two momentum equations represent the acceleration of the fluid particle in the horizontal plane. If the fluid acceleration is ignored, then the two momentum equations are simplified into the so-called diffusion wave equations. In contrast to the SWEs approach, it is much less convenient to model floods with the Navier-Stokes equations. In conventional computational fluid dynamics (CFD), cumbersome treatments are needed to accurately capture the shape of the free surface. The SWEs are derived using the assumptions of small vertical velocity component, smooth water surface, gradual variation and hydrostatic pressure distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several equations of state (EOS) have been incorporated into a novel algorithm to solve a system of multi-phase equations in which all phases are assumed to be compressible to varying degrees. The EOSs are used to both supply functional relationships to couple the conservative variables to the primitive variables and to calculate accurately thermodynamic quantities of interest, such as the speed of sound. Each EOS has a defined balance of accuracy, robustness and computational speed; selection of an appropriate EOS is generally problem-dependent. This work employs an AUSM+-up method for accurate discretisation of the convective flux terms with modified low-Mach number dissipation for added robustness of the solver. In this paper we show a newly-developed time-marching formulation for temporal discretisation of the governing equations with incorporated time-dependent source terms, as well as considering the system of eigenvalues that render the governing equations hyperbolic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a linear technique that predicts how the stability of a thermo-acoustic system changes due to the action of a generic passive feedback device or a generic change in the base state. From this, one can calculate the passive device or base state change that most stabilizes the system. This theoretical framework, based on adjoint equations, is applied to two types of Rijke tube. The first contains an electrically-heated hot wire and the second contains a diffusion flame. Both heat sources are assumed to be compact so that the acoustic and heat release models can be decoupled. We find that the most effective passive control device is an adiabatic mesh placed at the downstream end of the Rijke tube. We also investigate the effects of a second hot wire and a local variation of the cross-sectional area but find that both affect the frequency more than the growth rate. This application of adjoint sensitivity analysis opens up new possibilities for the passive control of thermo-acoustic oscillations. For example, the influence of base state changes can be combined with other constraints, such as that the total heat release rate remains constant, in order to show how an unstable thermo-acoustic system should be changed in order to make it stable. Copyright © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The error theory of linear equation system has been applied to the calibration procedure of microwave network analyser in this article. A new explanation for the choice of the linear calibration equations is proposed and a general principle for choosing calibration equations is presented. The method can also be used to predict the occurrence of the problem of frequency limitation at some periodic frequencies. This principle is employed to the thru-short-delay (TSD) method and the solution using the chosen equations gives the most accurate results. A good agreement between the theory and the experiment has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.