938 resultados para Linkage map
Resumo:
En 1975, Wilson et King ont proposé que l'évolution opère non seulement via des changements affectant la structure des protéines, mais aussi via des mutations qui modifient la régulation génétique. L'étude des éléments régulateurs de l'expression génétique a un rôle important dans la compréhension de l'expression de différentes maladies et de la réponse thérapeutique. Nous avons développé un algorithme bio- informatique qui nous permet rapidement de trouver des sites de régulation génétique à travers tout le génome et pour une grande quantité de gènes. Notre approche consiste à trouver des sites polymorphes (SNPs) qui sont en déséquilibre de liaison avec le débalancement allélique (AI) afin de cartographier la région régulatrice et le site responsable. Notre méthode est avantageuse par rapport à d'autres méthodes, car elle n'a pas besoin des données « phasées». De plus, les données de débalancement allélique ne sont pas affectées par des facteurs externes étant donné qu'ils sont mesurés dans la même cellule. Nous avons démontré que notre approche est fiable et qu'elle peut détecter des sites loin du gène. De plus, il peut être appliqué à des données de génotypage sans avoir besoin de les « phaser » .
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing
Resumo:
We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.
Resumo:
We consider the stability properties of spatial and temporal periodic orbits of one-dimensional coupled-map lattices. The stability matrices for them are of the block-circulant form. This helps us to reduce the problem of stability of spatially periodic orbits to the smaller orbits corresponding to the building blocks of spatial periodicity, enabling us to obtain the conditions for stability in terms of those for smaller orbits.
Resumo:
By introducing a periodic perturbation in the control parameter of the logistic map we have investigated the period locking properties of the map. The map then gets locked onto the periodicity of the perturbation for a wide range of values of the parameter and hence can lead to a control of the chaotic regime. This parametrically perturbed map exhibits many other interesting features like the presence of bubble structures, repeated reappearance of periodic cycles beyond the chaotic regime, dependence of the escape parameter on the seed value and also on the initial phase of the perturbation etc.
Resumo:
We have studied the bifurcation structure of the logistic map with a time dependant control parameter. By introducing a specific nonlinear variation for the parameter, we show that the bifurcation structure is modified qualitatively as well as quantitatively from the first bifurcation onwards. We have also computed the two Lyapunov exponents of the system and find that the modulated logistic map is less chaotic compared to the logistic map.
Resumo:
This is a sequel to our earlier work on the modulated logistic map. Here, we first show that the map comes under the universality class of Feigenbaum. We then give evidence for the fact that our model can generate strange attractors in the unit square for an uncountable number of parameter values in the range μ∞<μ<1. Numerical plots of the attractor for several values of μ are given and the self-similar structure is explicity shown in one case. The fractal and information dimensions of the attractors for many values of μ are shown to be greater than one and the variation in their structure is analysed using the two Lyapunov exponents of the system. Our results suggest that the map can be considered as an analogue of the logistic map in two dimensions and may be useful in describing certain higher dimensional chaotic phenomena.
Resumo:
We analyse numerically the bifurcation structure of a two-dimensional noninvertible map and show that different periodic cycles are arranged in it exactly in the same order as in the case of the logistic map. We also show that this map satisfies the general criteria for the existence of Sarkovskii ordering, which supports our numerical result. Incidently, this is the first report of the existence of Sarkovskii ordering in a two-dimensional map.
Resumo:
We study the period-doubling bifurcations to chaos in a logistic map with a nonlinearly modulated parameter and show that the bifurcation structure is modified significantly. Using the renormalisation method due to Derrida et al. we establish the universal behaviour of the system at the onset of chaos.
Resumo:
In der vorliegenden Dissertation geht es um die Dokumentation, theoretische Begründung und Auswertung des in 25 Jahren Praxis entwickelten Curriculums der Bewusstseinsschulung und -weitung der Orgodynamik. Dabei geht es insbesondere um den Vergleich und die forschungsorientierte Verknüpfung verschiedener Traditionen der Bewusstseinsbildung, der ihnen zugrunde liegenden Konzepte und anthropologischen Dimensionen im Schnittfeld pädagogischer, psychologischer und spiritueller Perspektiven. In Anlehnung an das von Fuhr/Dauber (2002) entwickelte Modell, der Praxisentwicklungsforschung, welche die Verflechtung von Theorie und Praxis ansteuert, wird der orgodynamische Ansatz wissenschaftlich dokumentiert und theoretisch begründet. Über eine induktive Vorgehensweise werden die historischen Wurzeln konzeptionell dargelegt, die verborgenen Paradigmen herausgearbeitet, sowie das Curriculum erläutert und ausgewertet. In einem ersten theorieorientierten Kapitel wird das orgodynamische Methodenspektrum in seinem Grundmodell und den vier zentralen Dimensionen (mentale, körperliche, emotionale, energetische Dimension) aufgezeigt und mit theoretischen Hintergrundkonzepten verglichen und verknüpft. Die vier sich überlappenden Methodengruppen der mental, körperlich, emotional und energetisch orientierten Bewusstseinsarbeit werden differenziert dargestellt und in ihrer Beziehung zueinander diskutiert. Anhand eines Modells (Methodenrad) wird die multi-dimensionale Perspektive des Methodenspektrums, in einer nichthierarchischen Zuordnung sichtbar. Im zweiten theorieorientierten Hauptteil werden zunächst die zentralen vier Paradigmen der Orgodynamik (Präsenz, Multidimensionalität, Flow/Fließendes Gewahrsein, Bezogenheit) vorgestellt, theoretisch und praxisbezogen entfaltet und in einer Paradigmen-Landkarte zueinander in Beziehung gesetzt. Dabei werden die kategorialen Ausführungen durchgehend an Praxisbeispielen veranschaulicht und im Blick auf drei vorgestellte Zugänge zur Bewusstseinsweitung (Immersion, Integration und Dekonstruktion) exemplarisch didaktisch kommentiert. Im dritten Hauptteil wird das Curriculum im Zusammenhang mit einer Auswertungsmatrix erläutert. Diese dient als Überprüfungsinstrument. Mit ihrer Hilfe werden die verschiedenen methodischen Zugangsweisen und Arbeitsformen dieses Ansatzes, exemplarisch anhand von 2 Ausbildungswochen, im Blick der Multidimensionalität dokumentiert. Damit wird diese multidimensional angelegte Praxis exemplarisch bis in methodische Details nachvollziehbar und in dialogisch-selbstreflexiver Form überprüfbar. Exemplarisch werden in einem Exkurs erste Itemvorschläge gemacht, welche die wissenschaftliche Anschlussfähigkeit an neuere Forschung im transpersonalen Bereich aufzeigen. Das innere Anliegen der vorliegenden Arbeit zeigt in der Verschränkung von Theorie und Praxis, dass die Paradigmen der Orgodynamik, Präsenz, Multidimensionalität, fließendes Gewahrsein und bewusste Bezogenheit vier pädagogisch umgesetzte Paradigmen für eine Bewusstseinserforschung in der Erwachsenenbildung sind. Stichworte: Multidimensional, Bewusstseinserforschung, Bewusstseinsweite, Präsenz, bewusste Bezogenheit, Flow/Fließendes Gewahrsein, das „Größere“, Immersion, Integration, Dekonstruktion, pädagogische Paradigmen, Erwachsenenbildung, Multidimensionales Methodenspektrum, Orgodynamik, Körpertherapie. ---------------------------