869 resultados para Linear Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of the present study was to develop ideal low band gap D-A copolymers for photoconducting and non-linear optical applications. This chapter summarizes the overall research work done. Designed copolymers were synthesized via direct arylation or Suzuki coupling reactions. Copolymers were characterized by theoretical and experimental methods. The suitability of these copolymers in photoconducting and optical limiting devices has been investigated.The results suggest that the copolymers investigated in the present study have a good non-linear optical response and are comparable to or even better than the D-A copolymers reported in the literature and hence could be chosen as ideal candidates with potential applications for non-linear optics. The results also show that the structures of the polymers have great impact on NLO properties. Copolymers studied here exhibits good optical limiting property at 532 nm wavelength due to two-photon absorption (TPA) process. The results revealed that the two copolymers, (P(EDOT-BTSe) and P(PH-TZ)) exhibited strong two-photon absorption and superior optical power limiting properties, which are much better than that of others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate for very general cases the multiplet and fine structure splitting of muonelectron atoms arising from the coupling of the electron and muon angular momenta, including the effect of the Breit operator plus the electron state-dependent screening. Although many conditions have to be fulfilled simultaneously to observe these effeets, it should be possible to measure them in the 6h- 5g muonic transition in the Sn region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton-Krylov-solvers is considered and analyzed. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes which are demonstrated through numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der Arbeit werden zunächst die wesentlichsten Fakten über Schiefpolynome wiederholt, der Fokus liegt dabei auf Shift- und q-Shift-Operatoren in Charakteristik Null. Alle für die Arithmetik mit diesen Objekten notwendigen Konzepte und Algorithmen finden sich im ersten Kapitel. Einige der zur Bestimmung von Lösungen notwendigen Daten können aus dem Newtonpolygon, einer den Operatoren zugeordneten geometrischen Figur, abgelesen werden. Die Herleitung dieser Zusammenhänge ist das Thema des zweiten Kapitels der Arbeit, wobei dies insbesondere im q-Shift-Fall in dieser Form neu ist. Das dritte Kapitel beschäftigt sich mit der Bestimmung polynomieller und rationaler Lösungen dieser Operatoren, dabei folgt es im Wesentlichen der Darstellung von Mark van Hoeij. Der für die Faktorisierung von (q-)Shift Operatoren interessanteste Fall sind die sogenannten (q-)hypergeometrischen Lösungen, die direkt zu Rechtsfaktoren erster Ordnung korrespondieren. Im vierten Kapitel wird der van Hoeij-Algorithmus vom Shift- auf den q-Shift-Fall übertragen. Außerdem wird eine deutliche Verbesserung des q-Petkovsek-Algorithmus mit Hilfe der Daten des Newtonpolygons hergeleitet. Das fünfte Kapitel widmet sich der Berechnung allgemeiner Faktoren, wozu zunächst der adjungierte Operator eingeführt wird, der die Berechnung von Linksfaktoren erlaubt. Dann wird ein Algorithmus zur Berechnung von Rechtsfaktoren beliebiger Ordnung dargestellt. Für die praktische Benutzung ist dies allerdings für höhere Ordnungen unpraktikabel. Bei fast allen vorgestellten Algorithmen tritt das Lösen linearer Gleichungssysteme über rationalen Funktionenkörpern als Zwischenschritt auf. Dies ist in den meisten Computeralgebrasystemen nicht befriedigend gelöst. Aus diesem Grund wird im letzten Kapitel ein auf Evaluation und Interpolation basierender Algorithmus zur Lösung dieses Problems vorgestellt, der in allen getesteten Systemen den Standard-Algorithmen deutlich überlegen ist. Alle Algorithmen der Arbeit sind in einem MuPAD-Package implementiert, das der Arbeit beiliegt und eine komfortable Handhabung der auftretenden Objekte erlaubt. Mit diesem Paket können in MuPAD nun viele Probleme gelöst werden, für die es vorher keine Funktionen gab.

Relevância:

20.00% 20.00%

Publicador: