888 resultados para Lean tools
Resumo:
This report is a formal documentation of the results of an assessment of the degree to which Lean Principles and Practices have been implemented in the US Aerospace and Defense Industry. An Industry Association team prepared it for the DCMA-DCAAIndustry Association “Crosstalk” Coalition in response to a “Crosstalk” meeting action request to the industry associations. The motivation of this request was provided by the many potential benefits to system product quality, affordability and industry responsiveness, which a high degree of industry Lean implementation can produce.
Resumo:
• Lean Aerospace Initiative origin and mission • Functional lean successes • Successes through interaction between functions • Success through enterprise integration and value creation • Total enterprise integration of all stakeholders • Enterprise transformation insights
Resumo:
In the 1980’s, many United States industrial organizations started developing new production processes to improve quality, reduce cost, and better respond to customer needs and the pressures of global competition. This new paradigm was coined Lean Production (or simply “Lean”) in the book The Machine That Changed The World published in 1990 by researchers from MIT’s International Motor Vehicle Program. In 1993, a consortium of US defense aerospace firms and the USAF Aeronautical Systems Center, together with the AFRL Materials and Manufacturing Directorate, started the Lean Aircraft Initiative (LAI) at MIT. With expansion in 1998 to include government space products, the program was renamed the Lean Aerospace Initiative. LAI’s vision is to “Significantly reduce the cost and cycle time for military aerospace products throughout the entire value chain while continuing to improve product performance.” By late 1998, 23 industry and 13 government organizations with paying memberships, along with MIT and the UAW were participating in the LAI.
Resumo:
-Status report on June Executive Board commitments -Enterprise-level LESAT Beta Version -Detailed-level LESAT Development Plan -Industry and government participation and support requirements -Resource Needs -Executive Board decision on proposed next steps
Resumo:
PowerPoint presentation that showcases: • Research Objectives • Strategic Value of the Lean Enterprise • Multi-Stakeholder Value Optimization • Lean Enterprise Self-Assessment Tool (LESAT) • Leading and Lagging Indicators of Lean Enterprise Transformation • Empirical Results in the Aerospace Industry • Accelerating the Lean Transformation - Linking LESAT to Strategic Objectives • Summary and Questions
Resumo:
This volume of the final report documents the technical work performed from December 1998 through December 2002 under Cooperative Agreement F33615-97-2-5153 executed between the U.S. Air Force, Air Force Research Laboratory, Materials and Manufacturing Directorate, Manufacturing Technology Division (AFRL/MLM) and the McDonnell Douglas Corporation, a wholly-owned subsidiary of The Boeing Company. The work was accomplished by The Boeing Company, Phantom Works, Huntington Beach, St. Louis, and Seattle; Ford Motor Company; Integral Inc.; Sloan School of Management in the Massachusetts Institute of Technology; Pratt & Whitney; and Central State University in Xenia, Ohio and in association with Raytheon Corporation. The LeanTEC program manager for AFRL is John Crabill of AFRL / MLMP and The Boeing Company program manager is Ed Shroyer of Boeing Phantom Works in Huntington Beach, CA. Financial performance under this contract is documented in the Financial Volume of the final report.
Resumo:
The essence of lean is very simple, but from a research and implementation point of view overwhelming. Lean is the search for perfection through the elimination of waste and the insertion of practices that contribute to reduction in cost and schedule while improving performance of products. This concept of lean has wide applicability to a large range of processes, people and organizations, from concept design to the factory floor, from the laborer to the upper management, from the customer to the developer. Progress has been made in implementing and raising the awareness of lean practices at the factory floor. However, the level of implementation and education in other areas, like product development, is very low.
Resumo:
This paper reports on results from five companies in the aerospace and automotive industries to show that over-commitment of technical professionals and under-representation of key skills on technology development and transition teams seriously impairs team performance. The research finds that 40 percent of the projects studied were inadequately staffed, resulting in weaker team communications and alignment. Most importantly, the weak staffing on these teams is found to be associated with a doubling of project failure rate to reach full production. Those weakly staffed teams that did successfully insert technology into production systems were also much more likely than other teams to have development delays and late engineering changes. The conclusion suggests that the expense of project failure, delay and late engineering changes in these companies must greatly out-weigh the savings gained from reduced staffing costs, and that this problem is likely going to be found in other technology-intensive firms intent on seeing project budgets as a cost to be minimized rather than an investment to be maximized.
Resumo:
This paper explores the concept of Value Stream Analysis and Mapping (VSA/M) as applied to Product Development (PD) efforts. Value Stream Analysis and Mapping is a method of business process improvement. The application of VSA/M began in the manufacturing community. PD efforts provide a different setting for the use of VSA/M. Site visits were made to nine major U.S. aerospace organizations. Interviews, discussions, and participatory events were used to gather data on (1) the sophistication of the tools used in PD process improvement efforts, (2) the lean context of the use of the tools, and (3) success of the efforts. It was found that all three factors were strongly correlated, suggesting success depends on both good tools and lean context. Finally, a general VSA/M method for PD activities is proposed. The method uses modified process mapping tools to analyze and improve process.
Resumo:
This paper explores the concept of Value Stream Analysis and Mapping (VSA/M) as applied to Product Development (PD) efforts. Value Stream Analysis and Mapping is a method of business process improvement. The application of VSA/M began in the manufacturing community. PD efforts provide a different setting for the use of VSA/M. Site visits were made to nine major U.S. aerospace organizations. Interviews, discussions, and participatory events were used to gather data on (1) the sophistication of the tools used in PD process improvement efforts, (2) the lean context of the use of the tools, and (3) success of the efforts. It was found that all three factors were strongly correlated, suggesting success depends on both good tools and lean context. Finally, a general VSA/M method for PD activities is proposed. The method uses modified process mapping tools to analyze and improve process.
Resumo:
Manufacturing has evolved to become a critical element of the competitive skill set of defense aerospace firms. Given the changes in the acquisition environment and culture; traditional “thrown over the wall” means of developing and manufacturing products are insufficient. Also, manufacturing systems are complex systems that need to be carefully designed in a holistic manner and there are shortcomings with available tools and methods to assist in the design of these systems. This paper outlines the generation and validation of a framework to guide this manufacturing system design process.
Resumo:
Lean is common sense and good business sense. As organizations grow and become more successful, they begin to lose insight into the basic truths of what made them successful. Organizations have to deal with more and more issues that may not have anything to do with directly providing products or services to their customers. Lean is a holistic management approach that brings the focus of the organization back to providing value to the customer. In August 2002, Mrs. Darleen Druyun, the Principal Deputy to the Assistant Secretary of the Air Force for Acquisition and government co-chairperson of the Lean Aerospace Initiative (LAI), decided it was time for Air Force acquisitions to embrace the concepts of lean. At her request, the LAI Executive Board developed a concept and methodology to employ lean into the Air Force’s acquisition culture and processes. This was the birth of the “Lean Now” initiative. An enterprise-wide approach was used, involving Air Force System Program Offices (SPOs), aerospace industry, and several Department of Defense agencies. The aim of Lean Now was to focus on the process interfaces between these “enterprise” stakeholders to eliminate barriers that impede progress. Any best practices developed would be institutionalized throughout the Air Force and the Department of Defense (DoD). The industry members of LAI agreed to help accelerate the government-industry transformation by donating lean Subject Matter Experts (SMEs) to mentor, train, and facilitate the lean events of each enterprise. Currently, the industry SMEs and the Massachusetts Institute of Technology are working together to help the Air Force develop its own lean infrastructure of training courses and Air Force lean SMEs. The first Lean Now programs were the F/A-22, Global Hawk, and F-16. Each program focused on specific acquisition processes. The F/A-22 focused on the Test and Evaluation process; the Global Hawk focused on Evolutionary Acquisitions; and the F-16 focused on improving the Contract Closeout process. Through lean, each enterprise made many significant improvements. The F/A-22 was able to reduce its Operational Flight Plan (OFP) Preparation and Load process time of 2 to 3 months down to 7 hours. The Global Hawk developed a new production plan that increases the annual production of its Integrated Sensor Suite from 3 per year to 6 per year. The F-16 enterprise generated and is working 12 initiatives that could result in a contract closeout cycle time reduction of 3 to 7 years. Each enterprise continues to generate more lean initiatives that focus on other areas and processes within their respective enterprises.
Resumo:
“What is value in product development?” is the key question of this paper. The answer is critical to the creation of lean in product development. By knowing how much value is added by product development (PD) activities, decisions can be more rationally made about how to allocate resources, such as time and money. In order to apply the principles of Lean Thinking and remove waste from the product development system, value must be precisely defined. Unfortunately, value is a complex entity that is composed of many dimensions and has thus far eluded definition on a local level. For this reason, research has been initiated on “Measuring Value in Product Development.” This paper serves as an introduction to this research. It presents the current understanding of value in PD, the critical questions involved, and a specific research design to guide the development of a methodology for measuring value. Work in PD value currently focuses on either high-level perspectives on value, or detailed looks at the attributes that value might have locally in the PD process. Models that attempt to capture value in PD are reviewed. These methods, however, do not capture the depth necessary to allow for application. A methodology is needed to evaluate activities on a local level to determine the amount of value they add and their sensitivity with respect to performance, cost, time, and risk. Two conceptual tools are proposed. The first is a conceptual framework for value creation in PD, referred to here as the Value Creation Model. The second tool is the Value-Activity Map, which shows the relationships between specific activities and value attributes. These maps will allow a better understanding of the development of value in PD, will facilitate comparison of value development between separate projects, and will provide the information necessary to adapt process analysis tools (such as DSM) to consider value. The key questions that this research entails are: · What are the primary attributes of lifecycle value within PD? · How can one model the creation of value in a specific PD process? · Can a useful methodology be developed to quantify value in PD processes? · What are the tools necessary for application? · What PD metrics will be integrated with the necessary tools? The research milestones are: · Collection of value attributes and activities (September, 200) · Development of methodology of value-activity association (October, 2000) · Testing and refinement of the methodology (January, 2001) · Tool Development (March, 2001) · Present findings at July INCOSE conference (April, 2001) · Deliver thesis that captures a formalized methodology for defining value in PD (including LEM data sheets) (June, 2001) The research design aims for the development of two primary deliverables: a methodology to guide the incorporation of value, and a product development tool that will allow direct application.
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositional data. Nevertheless, the use of this methodology is only possible for those data sets without null values. Consequently, in those data sets where the zeros are present, a previous treatment becomes necessary. Last advances in the treatment of compositional zeros have been centered especially in the zeros of structural nature and in the rounded zeros. These tools do not contemplate the particular case of count compositional data sets with null values. In this work we deal with \count zeros" and we introduce a treatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichlet probability distribution as a prior and we estimate the posterior probabilities. Then we apply a multiplicative modi¯cation for the non-zero values. We present a case study where this new methodology is applied. Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
Blogging has become one of the key ingredients of the so-called socials networks. This phenomenon has indeed invaded the world of education. Connections between people, comments on each other posts, and assessment of innovation are usually interesting characteristics of blogs related to students and scholars. Blogs have become a kind of new form of authority, bringing about (divergent) discussions which lead to creation of knowledge. The use of blogs as an innovative, educational tool is not at all new. However, their use in universities is not very widespread yet. Blogging for personal affairs is rather commonplace, but blogging for professional affairs – teaching, research and service, is scarce, despite the availability of ready-to-use, free tools. Unfortunately, Information Society has not reached yet enough some universities: not only are (student) blogs scarcely used as an educational tool, but it is quite rare to find a blog written by University professors. The Institute of Computational Chemistry of the University of Girona and the Department of Chemistry of the Universitat Autònoma de Barcelona has joined forces to create “InnoCiència”, a new Group on Digital Science Communitation. This group, formed by ca. ten researchers, has promoted the use of blogs, twitters. wikis and other tools of Web 2.0 in activities in Catalonia concerning the dissemination of Science, like Science Week, Open Day or Researchers’ Night. Likewise, its members promote use of social networking tools in chemistry- and communication-related courses. This communication explains the outcome of social-network experiences with teaching undergraduate students and organizing research communication events. We provide live, hands-on examples and interactive ground to show how blogs and twitters can be used to enhance the yield of teaching and research. Impact of blogging and other social networking tools on the outcome of the learning process is very depending on the target audience and the environmental conditions. A few examples are provided and some proposals to use these techniques efficiently to help students are hinted