843 resultados para Lean body mass
Resumo:
OBJECTIVE: Bariatric surgery reverses obesity-related comorbidities, including type 2 diabetes mellitus. Several studies have already described differences in anthropometrics and body composition in patients undergoing Roux-en-Y gastric bypass compared with laparoscopic adjustable gastric banding, but the role of adipokines in the outcomes after the different types of surgery is not known. Differences in weight loss and reversal of insulin resistance exist between the 2 groups and correlate with changes in adipokines. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7 kg/m(2)) underwent 2 types of laparoscopic weight loss surgery (Roux-en-Y gastric bypass=10, adjustable gastric banding=5). Weight, waist and hip circumference, body composition, plasma metabolic markers, and lipids were measured at set intervals during a 24-month period after surgery. RESULTS: At 24 months, patients who underwent Roux-en-Y were overweight (BMI 29.7 kg/m(2)), whereas patients who underwent gastric banding remained obese (BMI 36.3 kg/m(2)). Patients who underwent Roux-en-Y lost significantly more fat mass than patients who underwent gastric banding (mean difference 16.8 kg, P<.05). Likewise, leptin levels were lower in the patients who underwent Roux-en-Y (P=.003), and levels correlated with weight loss, loss of fat mass, insulin levels, and Homeostasis Model of Assessment 2. Adiponectin correlated with insulin levels and Homeostasis Model of Assessment 2 (r=-0.653, P=.04 and r=-0.674, P=.032, respectively) in the patients who underwent Roux-en-Y at 24 months. CONCLUSION: After 2 years, weight loss and normalization of metabolic parameters were less pronounced in patients who underwent gastric banding compared with patients who underwent Roux-en-Y gastric bypass. Our findings require confirmation in a prospective randomized trial.
Resumo:
Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.
Resumo:
Social stressors at work (such as conflict or animosities) imply disrespect or a lack of appreciation and thus a threat to self. Stress induced by this offence to self might result, over time, in a change in body weight. The current study investigated the impact of changing working conditions--specifically social stressors, demands, and control at work--on women's change in weighted Body-Mass-Index over the course of a year. Fifty-seven women in their first year of occupational life participated at baseline and thirty-eight at follow-up. Working conditions were assessed by self-reports and observer-ratings. Body-Mass-Index at baseline and change in Body-Mass-Index one year later were regressed on self-reported social stressors as well as observed work stressors, observed job control, and their interaction. Seen individually, social stressors at work predicted Body-Mass-Index. Moreover, increase in social stressors and decrease of job control during the first year of occupational life predicted increase in Body-Mass-Index. Work redesign that reduces social stressors at work and increases job control could help to prevent obesity epidemic.
Resumo:
BACKGROUND The accuracy of CT pulmonary angiography (CTPA) in detecting or excluding pulmonary embolism has not yet been assessed in patients with high body weight (BW). METHODS This retrospective study involved CTPAs of 114 patients weighing 75-99 kg and those of 123 consecutive patients weighing 100-150 kg. Three independent blinded radiologists analyzed all examinations in randomized order. Readers' data on pulmonary emboli were compared with a composite reference standard, comprising clinical probability, reference CTPA result, additional imaging when performed and 90-day follow-up. Results in both BW groups and in two body mass index (BMI) groups (BMI <30 kg/m(2) and BMI ≥ 30 kg/m(2), i.e., non-obese and obese patients) were compared. RESULTS The prevalence of pulmonary embolism was not significantly different in the BW groups (P=1.0). The reference CTPA result was positive in 23 of 114 patients in the 75-99 kg group and in 25 of 123 patients in the ≥ 100 kg group, respectively (odds ratio, 0.991; 95% confidence interval, 0.501 to 1.957; P=1.0). No pulmonary embolism-related death or venous thromboembolism occurred during follow-up. The mean accuracy of three readers was 91.5% in the 75-99 kg group and 89.9% in the ≥ 100 kg group (odds ratio, 1.207; 95% confidence interval, 0.451 to 3.255; P=0.495), and 89.9% in non-obese patients and 91.2% in obese patients (odds ratio, 0.853; 95% confidence interval, 0.317 to 2.319; P=0.816). CONCLUSION The diagnostic accuracy of CTPA in patients weighing 75-99 kg or 100-150 kg proved not to be significantly different.
Resumo:
BACKGROUND A low or high body mass index (BMI) has been associated with increased mortality risk in older subjects without taking fat mass index (FMI) and fat-free mass index (FFMI) into account. This information is essential because FMI is modulated through different healthcare strategies than is FFMI. OBJECTIVE We aimed to determine the relation between body composition and mortality in older subjects. DESIGN We included all adults ≥65 y old who were living in Switzerland and had a body-composition measurement by bioelectrical impedance analysis at the Geneva University Hospitals between 1990 and 2011. FMI and FFMI were divided into sex-specific quartiles. Quartile 1 (i.e., the reference category) corresponded to the lowest FMI or FFMI quartile. Mortality data were retrieved from the hospital database, the Geneva death register, and the Swiss National Cohort until December 2012. Comorbidities were assessed by using the Cumulative Illness Rating Scale. RESULTS Of 3181 subjects included, 766 women and 1007 men died at a mean age of 82.8 and 78.5 y, respectively. Sex-specific Cox regression models, which were used to adjust for age, BMI, smoking, ambulatory or hospitalized state, and calendar time, showed that body composition did not predict mortality in women irrespective of whether comorbidities were taken into account. In men, risk of mortality was lower with FFMI in quartiles 3 and 4 [HR: 0.78 (95% CI: 0.62, 0.98) and 0.64 (95% CI: 0.49, 0.85), respectively] but was not affected by FMI. When comorbidities were adjusted for, FFMI in quartile 4 (>19.5 kg/m(2)) still predicted a lower risk of mortality (HR: 0.72; 95% CI: 0.54, 0.96). CONCLUSIONS Low FFMI is a stronger predictor of mortality than is BMI in older men but not older women. FMI had no impact on mortality. These results suggest potential benefits of preventive interventions with the aim of maintaining muscle mass in older men. This trial was registered at clinicaltrials.gov as NCT01472679.
Resumo:
UNLABELLED Obesity is a well-recognized risk factor for atrial fibrillation (AF), yet adiposity measures other than body mass index (BMI) have had limited assessment in relation to AF risk. We examined the associations of adiposity measures with AF in a biracial cohort of older adults. Given established racial differences in obesity and AF, we assessed for differences by black and white race in relating adiposity and AF. METHODS We analyzed data from 2,717 participants of the Health, Aging, and Body Composition Study. Adiposity measures were BMI, abdominal circumference, subcutaneous and visceral fat area, and total and percent fat mass. We determined the associations between the adiposity measures and 10-year incidence of AF using Cox proportional hazards models and assessed for their racial differences in these estimates. RESULTS In multivariable-adjusted models, 1-SD increases in BMI, abdominal circumference, and total fat mass were associated with a 13% to 16% increased AF risk (hazard ratio [HR] 1.14, 95% CI 1.02-1.28; HR 1.16, 95% CI 1.04-1.28; and HR 1.13, 95% CI 1.002-1.27). Subcutaneous and visceral fat areas were not significantly associated with incident AF. We did not identify racial differences in the associations between the adiposity measures and AF. CONCLUSION Body mass index, abdominal circumference, and total fat mass are associated with risk of AF for 10years among white and black older adults. Obesity is one of a limited number of modifiable risk factors for AF; future studies are essential to evaluate how obesity reduction can modify the incidence of AF.
Resumo:
High rates of overweight and obesity in African American women have been attributed, in part, to poor health habits, such as physical inactivity, and cultural influences on body image perceptions. The purpose of this study was to determine the relationship among body mass index (BMI=kg/m2), body image perception (perceived and desired) and physical activity, both self-reported and objectively measured. Anthropometric measures of BMI and Pulvers' culturally relevant body image, physical activity and demographic data were collected from 249 African American women in Houston. Women ( M = 44.8 yrs, SD = 9.5) were educated (53% college graduates) and were overweight (M = 35.0 kg/m2, SD = 9.2). Less than half of women perceived their weight correctly regardless of their actual weight (p < 0.001). Nearly three-fourths (73.9%) of women who were normal weight desired to be obese, and only 39.4% of women desired to be normal weight, regardless of actual or perceived weight. Women in all weight classes (normal, overweight and obese) varied in objective measures of physical activity (F(2,112) = 4.424, p = .014). Regression analyses showed objectively measured physical activity was significantly associated with BMI ( Beta = -2.45, p < .01) and self-reported walking was significantly associated with perceived BMI (Beta = -.156, p = .017). Results suggest African American women who are smaller want to be larger and African American women who are larger want to be smaller, revealing dichotomous distortion in body images. Low rates of physical activity may be a factor. Research is needed to increase physical activity levels in African American women, leading to improved satisfaction with normal weight as desirable for health and beauty. Supported by NCI (NIH) 1R01CA109403. ^
Resumo:
Previous research supports the hypothesis that a "rich" diet (i.e., high in fat and low in fiber) increases the risk of colon cancer. Previous research also supports the hypothesis that physical inactivity increases the risk of colon cancer, perhaps because physical inactivity decreases gut motility, thereby increasing tee time that carcinogens are in contact with the intestinal mucosa. Habitual physical inactivity, combined with rich diet, ordinarily results in chronic energy imbalance and gain in weight, except when energy balance is modified by disease or factors such as cigarette smoking. Cigarette smokers typically stay lean because of effects of smoking on the resting metabolic rate as well as on efficiency of caloric intake and storage. Therefore, if physical inactivity and rich diet do increase the risk of colon cancer, then weight gain during young adulthood should be positively associated with incidence of colon cancer during later life, especially in nonsmokers.^ This hypothesis was investigated in a cohort of 2,059 randomly selected middle-aged men who were employed at the Western Electric Company in Chicago and were free of clinically diagnosed cancer at initial examination in 1958. Body mass index (BMI) in middle age was calculated from measured height and weight at the initial examination. BMI at age 20 was estimated from weight at age 20 as recalled at the initial examination and height as measured at the initial examination. Change in BMI between age 20 and middle age was estimated by subtracting the BMI at 20 from the BMI in middle age. Forty-nine incident cases of colon cancer were detected during 25 years (43,326 person-years) at risk. When stratified by level of change in BMI from age 20 to middle age ($\le$1.9, 2.0-3.9, 4.0-5.9, $\ge$6.0 kg/m$\sp2$), age-adjusted relative hazards of colon cancer in never-smokers were 1.00, 1.22, 2.31, and 5.01, respectively (p for trend = 0.008); corresponding values in ever-smokers were 1.00, 0.95, 0.77, and 0.87, These associations did not change appreciably after further adjustment for BMI at age 20, subscapular-triceps skinfold ratio, cigarette smoking, consumption of alcohol, energy, fat, and calcium.^ We also investigated the hypothesis that the risk of colon cancer was higher in men who were lean at age 20 and became fat by middle age (lean-to-fat) than in men who were fat at age 20 and stayed fat in middle-age (fat-to-fat). "Lean" was defined as BMI $<$24 kg/m$\sp2$ at age 20 and as BMI $<$27.0 kg/m$\sp2$ in middle age. Among never-smokers, in comparison to men who were lean at age 20 and in middle age (lean-to-lean), the age-adjusted relative hazard of colon cancer was 1.43 in the fat-to-fat group (95% confidence interval (CI) 0.37-5.52) and 3.36 in the lean-to-fat group (95% CI 1.21-9.37). This investigation provides new results on the magnitude of risk of colon cancer associated with weight gain during adulthood (from age 20 to middle age). This relation was obscured or underestimated in previous studies due to effect-modification by cigarette smoking. Finally, the result supports the idea that a life-style characterized by chronic energy imbalance during young adulthood increases risk of colon cancer. ^
Resumo:
Data from the Chicago Western Electric Study were used to investigate whether central fat distribution, as estimated by the ratio of subscapular-to-triceps skinfold, was associated with 25-year risk of death from coronary heart disease in a cohort of 1,945 middle-aged employed men. Subscapular-triceps skinfold ratio was found positively and significantly associated with risk of coronary death after adjustment for age and body mass index. The age-adjusted proportional hazards regression coefficient was 0.2078 with 95% confidence interval of 0.0087 to 0.4069. A difference of 1.1 in the subscapular-triceps skinfold ratio (the difference between the mean of the fifth quintile and of the first and second quintiles combined) was associated with a relative risk of 1.31 with 95% confidence interval of 1.06 to 1.62. The coefficient was decreased to 0.1961 (95% confidence interval of ($-$0.0028 to 0.3950) after adjustment for diastolic blood pressure, serum cholesterol and cigarette smoking as well as age and body mass index. At least some of the effect of central fat on coronary risk is probably mediated by blood pressure and serum lipids, but whether all of the effect can be accounted for blood pressure and serum lipids is uncertain.^ This study supports the concept that central fat distribution is a risk factor for 25-year risk of coronary death in middle-aged men. ^
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.