940 resultados para Land use--Ontario--Niagara Peninsula.
Resumo:
Want to know what conditions to expect over the next stage of RAGBRAI? How hilly will it be, what towns and parks are between here and there, or what services are coming up in the next town?
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for another year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology.
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for our third year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology
Resumo:
The University of Iowa Office of the State Archaeologist and Team Archaeology are back on RAGBRAI for our third year of Archaeology on the Road, and pleased to partner this year with the IDNR: Geological and Water Survey and the U.S. Geological Survey under the theme “Human and Natural History Partners.” Archaeology on the Road brings you the unique cultural history and prehistory of Iowa on the RAGBRAI route, pointing out interesting and significant archaeological sites and sharing Iowa’s past along the way. Look for our booth at Expo and then again on Days 1, 5 and 6 on the route, and also keep an eye out for our Team Archaeology.
Resumo:
Nowadays, Species Distribution Models (SDMs) are a widely used tool. Using different statistical approaches these models reconstruct the realized niche of a species using presence data and a set of variables, often topoclimatic. There utilization range is quite large from understanding single species requirements, to the creation of nature reserve based on species hotspots, or modeling of climate change impact, etc... Most of the time these models are using variables at a resolution of 50km x 50km or 1 km x 1 km. However in some cases these models are used with resolutions below the kilometer scale and thus called high resolution models (100 m x 100 m or 25 m x 25 m). Quite recently a new kind of data has emerged enabling precision up to lm x lm and thus allowing very high resolution modeling. However these new variables are very costly and need an important amount of time to be processed. This is especially the case when these variables are used in complex calculation like models projections over large areas. Moreover the importance of very high resolution data in SDMs has not been assessed yet and is not well understood. Some basic knowledge on what drive species presence-absences is still missing. Indeed, it is not clear whether in mountain areas like the Alps coarse topoclimatic gradients are driving species distributions or if fine scale temperature or topography are more important or if their importance can be neglected when balance to competition or stochasticity. In this thesis I investigated the importance of very high resolution data (2-5m) in species distribution models using either very high resolution topographic, climatic or edaphic variables over a 2000m elevation gradient in the Western Swiss Alps. I also investigated more local responses of these variables for a subset of species living in this area at two precise elvation belts. During this thesis I showed that high resolution data necessitates very good datasets (species and variables for the models) to produce satisfactory results. Indeed, in mountain areas, temperature is the most important factor driving species distribution and needs to be modeled at very fine resolution instead of being interpolated over large surface to produce satisfactory results. Despite the instinctive idea that topographic should be very important at high resolution, results are mitigated. However looking at the importance of variables over a large gradient buffers the importance of the variables. Indeed topographic factors have been shown to be highly important at the subalpine level but their importance decrease at lower elevations. Wether at the mountane level edaphic and land use factors are more important high resolution topographic data is more imporatant at the subalpine level. Finally the biggest improvement in the models happens when edaphic variables are added. Indeed, adding soil variables is of high importance and variables like pH are overpassing the usual topographic variables in SDMs in term of importance in the models. To conclude high resolution is very important in modeling but necessitate very good datasets. Only increasing the resolution of the usual topoclimatic predictors is not sufficient and the use of edaphic predictors has been highlighted as fundamental to produce significantly better models. This is of primary importance, especially if these models are used to reconstruct communities or as basis for biodiversity assessments. -- Ces dernières années, l'utilisation des modèles de distribution d'espèces (SDMs) a continuellement augmenté. Ces modèles utilisent différents outils statistiques afin de reconstruire la niche réalisée d'une espèce à l'aide de variables, notamment climatiques ou topographiques, et de données de présence récoltées sur le terrain. Leur utilisation couvre de nombreux domaines allant de l'étude de l'écologie d'une espèce à la reconstruction de communautés ou à l'impact du réchauffement climatique. La plupart du temps, ces modèles utilisent des occur-rences issues des bases de données mondiales à une résolution plutôt large (1 km ou même 50 km). Certaines bases de données permettent cependant de travailler à haute résolution, par conséquent de descendre en dessous de l'échelle du kilomètre et de travailler avec des résolutions de 100 m x 100 m ou de 25 m x 25 m. Récemment, une nouvelle génération de données à très haute résolution est apparue et permet de travailler à l'échelle du mètre. Les variables qui peuvent être générées sur la base de ces nouvelles données sont cependant très coûteuses et nécessitent un temps conséquent quant à leur traitement. En effet, tout calcul statistique complexe, comme des projections de distribution d'espèces sur de larges surfaces, demande des calculateurs puissants et beaucoup de temps. De plus, les facteurs régissant la distribution des espèces à fine échelle sont encore mal connus et l'importance de variables à haute résolution comme la microtopographie ou la température dans les modèles n'est pas certaine. D'autres facteurs comme la compétition ou la stochasticité naturelle pourraient avoir une influence toute aussi forte. C'est dans ce contexte que se situe mon travail de thèse. J'ai cherché à comprendre l'importance de la haute résolution dans les modèles de distribution d'espèces, que ce soit pour la température, la microtopographie ou les variables édaphiques le long d'un important gradient d'altitude dans les Préalpes vaudoises. J'ai également cherché à comprendre l'impact local de certaines variables potentiellement négligées en raison d'effets confondants le long du gradient altitudinal. Durant cette thèse, j'ai pu monter que les variables à haute résolution, qu'elles soient liées à la température ou à la microtopographie, ne permettent qu'une amélioration substantielle des modèles. Afin de distinguer une amélioration conséquente, il est nécessaire de travailler avec des jeux de données plus importants, tant au niveau des espèces que des variables utilisées. Par exemple, les couches climatiques habituellement interpolées doivent être remplacées par des couches de température modélisées à haute résolution sur la base de données de terrain. Le fait de travailler le long d'un gradient de température de 2000m rend naturellement la température très importante au niveau des modèles. L'importance de la microtopographie est négligeable par rapport à la topographie à une résolution de 25m. Cependant, lorsque l'on regarde à une échelle plus locale, la haute résolution est une variable extrêmement importante dans le milieu subalpin. À l'étage montagnard par contre, les variables liées aux sols et à l'utilisation du sol sont très importantes. Finalement, les modèles de distribution d'espèces ont été particulièrement améliorés par l'addition de variables édaphiques, principalement le pH, dont l'importance supplante ou égale les variables topographique lors de leur ajout aux modèles de distribution d'espèces habituels.
Resumo:
The abandonment of agricultural land in mountainous areas has been an outstanding problem along the last century and has captured the attention of scientists, technicians and administrations, for the dramatic consequences sometimes occurred due to soil instability, steep slopes, rainfall regimes and wildfires. Hidromorfological and pedological alterations causing exceptional floods and accelerated erosion processes has therefore been studied, identifying the cause in the loss of landscape heterogeneity. Through the disappearance of agricultural works and drainage maintenance, slope stability has resulted severely affected. The mechanization of agriculture has caused the displacement of vines, olives and corks trees cultivation in terraced areas along the Mediterranean catchment towards more economically suitable areas. On the one hand, land use and management changes have implicated sociological changes as well, transforming areas inhabited by agricultural communities into deserted areas where the colonization of disorganized spontaneous vegetation has buried a valuable rural patrimony. On the other hand, lacking of planning and management of the abandoned areas has produced badlands and infertile soils due to wildfire and high erosion rates strongly degrading the whole ecosystems. In other cases, after land abandonment a process of soil regeneration has been recorded. Investigations have been conducted in a part of NE Spain where extended areas of terraced soils previously cultivated have been abandoned in the last century. The selected environments were semi-abandoned vineyards, semi-abandoned olive groves, abandoned stands of cork trees, abandoned stands of pine trees, scrubland of Cistaceaea, scrubland of Ericaceaea, and pasture. The research work was focused on the study of most relevant physical, chemical and biological soil properties, as well as runoff and erosion under soils with different plant cover to establish the abandonment effect on soil quality, due to the peculiarity and vulnerability of these soils with a much reduced depth. The period of observation was carried out from autumn 2009 to autumn 2010. The sediment concentration of soil erosion under vines was recorded as 34.52 g/l while under pasture it was 4.66 g/l. In addition, the soil under vines showed the least amount of organic matter, which was 12 times lower than all other soil environments. The carbon dioxide (CO2) and total glomalin (TG) ratio to soil organic carbon (SOC) in this soil was 0.11 and 0.31 respectively. However, the soil under pasture contained a higher amount of organic matter and showed that the CO2 and TG ratio to SOC was 0.02 and 0.11 respectively indicating that the soil under pasture better preserves the soil carbon pool. A similar trend was found in the intermediate soils in the sequence of land use change and abandonment. Soil structural stability increased in the two soil fractions investigated (0.25-2.00 mm, 2.0-5.6 mm) especially in those soils that did not undergo periodical perturbations like wildfires. Soil quality indexes were obtained by using relevant physical and chemical soil parameters. Factor analysis carried out to study the relationship between all soil parameters allowed to related variables and environments and identify those areas that better contribute to soil quality towards others that may need more attention to avoid further degradation processes
Resumo:
This contribution analyzes the evolution of perception of certain natural hazards over the past 25 years in a Mediterranean region. Articles from newspapers have been used as indicator. To this end a specific Spanish journal has been considered and an ACCESS database has been created with the summarized information from each news item. The database includes data such as the location of each specific article in the newspaper, its length, the number of pictures and figures, the headlines and a summary of the published information, including all the instrumental data. The study focused on hydrometeorological extremes, mainly floods and droughts, in the northeast of the Iberian Peninsula. The number of headlines per event, trends and other data have been analyzed and compared with "measured" information, in order to identify any bias that could lead to an erroneous perception of the phenomenon. The SPI index (a drought index based on standardized accumulated precipitation) has been calculated for the entire region, and has been used for the drought analysis, while a geodatabase implemented on a GIS built for all the floods recorded in Catalonia since 1900 (INUNGAMA) has been used to analyze flood evolution. Results from a questionnaire about the impact of natural hazards in two specific places have been also used to discuss the various perceptions between rural and urban settings. Results show a better correlation between the news about drought or water scarcity and SPI than between news on floods in Catalonia and the INUNGAMA database. A positive trend has been found for non-catastrophic floods, which is explained by decrease of the perception thresholds, the increase of population density in the most flood-prone areas and changes in land use.
Resumo:
Soil properties on the Cap de Creus Peninsula, NE Spain depend primarily on scarce agricultural practices and early abandonment. In the study area, 90% of which is mainly covered by Cistus shrubs, 8 environments representing variations in land use/land cover and soil properties at different depths were identified. In each environment variously vegetated areas were selected and sampled. The soils, collected at different depths, were classified as Lithic Xerorthents according to the United States Department of Agriculture system of soil classification (USDA-NRCS 1975). Differences in soil properties were largely found according to the evolution of the plant canopy and the land use history. To identify underlying patterns in soil properties related to environmental evolution, factor analysis was performed and factor scores were used to determine how the factor patterns varied between soil variables, soil depths and selected environments. The three-factor model always accounted for 80% of the total variation in the data at the different soil depths. Organic matter was the more relevant soil property at 0–2 cm depth, whereas active minerals (silt and clay) were found to be the most relevant soil parameters controlling soil dynamics at the other depths investigated. Results showed that vineyards and olive tree soils are poorly developed and present worse conditions for mineral and organic compounds. Analysis of factor scores allowed independent assessment of soils, depth and plant cover and demonstrated that soils present the best physico-chemical characteristics under Erica arborea and meadows. In contrast, soils under Cistus monspeliensis were less nutrient rich and less well structured
Resumo:
Cherts from the Middle Devonian Onondaga Formation of the Niagara Peninsula in Southern Ontario and Western New York State can now be distinguished from those of the Early Devonian Bois Blanc Formation of the same area based on differences in petrology, acritarchs, spores, and "Preservation Ratio" values. The finely crystalline, carbonate sediments of the Bois Blanc Formation were deposited under shallow, low energy conditions characterised by the acritarchs Leiofusa bacillum and L. minuta and a high relative abundance of the spore, Apiculiretusispora minor. The medio crystalline and bioclastic carbonate sediments of the Onondaga Formation were deposited under shallow, high energy conditions except for the finely crystalline lagoonal sediments of the Clarence Member which is characterised by the acritarchs Leiofusa navicula, L. sp. B, and L. tomaculata . The author has subdivided and correlated the Clarence Member of the Onondaga Formation using the "Preservation Ratio" values derived from the palynomorphs contained in the cherts. Clarence Member cherts were used by the Archaic people of the Niagara Peninsula for chipped-stone tools. The source area for the chert is considered to be the cobble beach deposits along the north shore of Lake Erie from Port Maitland to Nanticoke
Resumo:
Ontario Editorial Bureau (O.E.B.)
Resumo:
Background. West Nile Virus (WNV), a mosquito-borne flavivirus, is one of an increasing number of infectious diseases that have been emerging or re-emerging in the last two decades. Since the arrival ofWNV to Canada to present date, the Niagara Region has only reported 30 clinical cases, a small number compared to the hundreds reported in other regions of similar conditions. Moreover, the last reported human case in Niagara was in 2006. As it has been demonstrated that the majority of WNV infections are asymptomatic, the question remains whether the lack of clinical cases in Niagara truly reflects the lack of transmission to humans or if infections are still occurring but are mostly asymptomatic. Objectives. The general objective of this study was to establish whether or not active WNV transmission could be detected in a human population residing in Niagara for the 2007 transmission season. To fullfil this objective, a cross-sectional seroprevalence study was designed to investigate for the presence of anti-WNV antibodies in a sample of Mexican migrant agricultural workers employed in farms registered with the Seasonal Agricultural Workers Program (SAWP). Due to the Mexican origin of the study participants, three specific research objectives were proposed: a) determine the seroprevalence ofanti-WNV antibodies as well as anti-Dengue virus antibodies (a closely related virus prevalent in Mexico and likely to confound WNV serology); b) analyze risk factors associated with WNV and Dengue virus seropositivity; and c) assess the awareness of study participants about WNV infection as well as their understanding of the mode of transmission and clinical importance of the infection. Methodology: After obtaining ethics clearance from Brock University, farms were visited and workers invited to participate. Due to time constraints, only a small number of farms were enrolled with a resulting convenience and non-randomized study sample. Workers' demographic and epidemiological data were collected using a standardized questionnaire and blood samples were drawn to determine serum anti-WNV and anti- Dengue antibodies with a commercial ELISA. All positive samples were sent to the National Microbiology Laboratory in Winnipeg, Manitoba for confirmation with the Plaque Reduction Neutralization Test (PRNT). Data was analyzed with Stata 10.0. Antibody determinations were reported as seroprevalence proportions for both WNV and Dengue. Logistic regression was used to analyze risk factors that may be associated with seropositivity and awareness was reported as a proportion of the number of individuals possessing awareness over the total number of participants. Results and Discussion. In total 92 participants working in 5 farms completed the study. Using the commercial ELISA, seropositivity was as follows: 2.2% for WNV IgM, 20.7% for WNV IgG, and 17.1 % for Dengue IgG. Possible cross-reactivity was demonstrated in 15/20 (75.0%) samples that were positive for both WNV IgG and Dengue IgG. Confirmatory testing with the PRNT demonstrated that none of the WNV ELISA positive samples had antibodies to WNV but 13 samples tested positive for anti-Dengue antibodies (14.1 % Dengue sereoprevalence). The findings showed that the ELISA performance was very poor for assessing anti-WNV antibodies in individuals previously exposed to Dengue virus. However, the ELISA had better sensitivity and specificity for assessing anti-Dengue antibodies. Whereas statistical analysis could not be done for WNV seropositivity, as all samples were PRNT negative, logistic regression demonstrated several risk factors for Dengue exposure_ The first year coming to Canada appeared to be significantly associated with increased exposure to Dengue while lower socio-economic housing and the presence of a water basin in the yard in Mexico appeared to be significantly associated with a decreased exposure to Dengue_ These seemingly contradictory results illustrate that in mobile populations such as migrant workers, risk factors for exposure to Dengue are not easily identified and more research is needed. Assessing the awareness of WNV and its clinical importance showed that only 23% of participants had some knowledge of WNV, of which 76% knew that the infection was mosquito-borne and 47% recognized fever as a symptom. The identified lack of understanding and awareness was not surprising since WNV is not a visible disease in Mexico. Since WNV persists in an enzootic cycle in Niagara and the occurrence of future outbreaks is unpredictable, the agricultural workers remain at risk for transmission. Therefore it important they receive sufficient health education regarding WNV before leaving Mexico and during their stay in Canada. Conclusions. Human transmission of WNV could not be proven among the study participants even when due to their occupation they are at high risk for mosquito bites. The limitations of the study sample do not permit generalizable conclusions, however, the study findings are consistent with the absence of clinical cases in the Niagara Region, so it is likely that human transmission is indeed neglible or absent. As evidenced by our WNV serology results, PRNT must be utilized as a confirmatory test since false positivity occurs frequently. This is especially true when previous exposure to Dengue virus is likely.