919 resultados para LUBRICANT ADDITIVES
Resumo:
In recent years, we observed a significant increase of food fraud ranging from false label claims to the use of additives and fillers to increase profitability. Recently in 2013, horse and pig DNA were detected in beef products sold from several retailers. Mass spectrometry has become the workhorse in protein research and the detection of marker proteins could serve for both animal species and tissue authentication. Meat species authenticity will be performed using a well defined proteogenomic annotation, carefully chosen surrogate tryptic peptides and analysis using a hybrid quadrupole-Orbitrap mass spectrometer. Selected mammalian meat samples were homogenized, proteins were extracted and digested with trypsin. The samples were analyzed using a high-resolution mass spectrometer. The chromatography was achieved using a 30 minutes linear gradient along with a BioBasic C8 100 × 1 mm column at a flow rate of 75 µL/min. The mass spectrometer was operated in full-scan high resolution and accurate mass. MS/MS spectra were collected for selected proteotypic peptides. Muscular proteins were methodically analyzed in silico in order to generate tryptic peptide mass lists and theoretical MS/MS spectra. Following a comprehensive bottom-up proteomic analysis, we were able to detect and identify a proteotypic myoglobin tryptic peptide [120-134] for each species with observed m/z below 1.3 ppm compared to theoretical values. Moreover, proteotypic peptides from myosin-1, myosin-2 and -hemoglobin were also identified. This targeted method allowed a comprehensive meat speciation down to 1% (w/w) of undesired product.
Resumo:
The flammability of short Kevlar aramide fiber-thermoplastic polyurethane (TPU) has been investigated with respect to fiber loading and various flame retardant additives such as halogen containing polymers, antimony oxide/chlorine donor combination, zinc borate, and aluminum hydroxide. Smoke generation was reduced drastically, while the oxygen index was reduced marginally in the presence of short fibers. The best improvement in the oxygen index was obtained with antimony oxide/chlorinated paraffin wax combination, in the weight ratio 1:6. A 70 phr loading of aluminum hydroxide improved LOI and reduced smoke generation.
Resumo:
Aquaculture farms, particularly in Southeast Asia are facing severe crisis due to increasing incidences of White Spot Syndrome Virus (WSSV). Actinomycetes have provided many important bioactive compounds of high prophylactic and therapeutic value and are continually being screened for new compounds. In this communication, the results of a study made to determine the effectiveness of marine actinomycetes against the white spot disease in penaeid shrimps are presented. Twenty-five isolates of actinomycetes were tested for their ability to reduce infection due to WSSV among cultured shrimps. When these actinomycetes were made available as feed additives to the post-larvae of the black tiger shrimp Penaeus monodon for two weeks and challenged with WSSV, the post challenge survival showed variations from 11 to 83%. However, six isolates have shown to be the most potential candidates for further study.
Studies on some supported transition metal complex and metal oxide catalysts for oxidation reactions
Resumo:
Zeolite encapsulated transition metal complexes have received wide attention as an effective heterogenized system that combines the tremendous activity of the metal complexes and the attractive features of the zeolite structure. Zeolite encapsulated complexes offer a bright future for attempts to replace homogeneous systems retaining its catalytic activity and minimizing the technical problems. especially for the partial oxidation of organic compounds. Studies on some zeolite encapsulated transition metal complexes are presented in this thesis. The ligands selected are technically important in a bio-mimetic or structural perspective. Attempts have been made in this study to investigate the composition, structure and stability of encapsulated complexes using available techniques. The catalytic activity of encapsulated complexes was evaluated for the oxidation of some organic compounds. The recycling ability of the catalyst as a result of the encapsulation was also studied.Our studies on Cu-Cr/Al2O3, a typical metal oxide catalyst. illustrate the use of design techniques to modify the properties of such conventional catalysts. The catalytic activity of this catalyst for the oxidation of carbon monoxide was measured. The effect of additives like Ce02 or Ti02 on the activity and stability of this system was also investigated. The additive is potent to improve the activity and stability ofthe catalyst so as to be more effective in commercial usage.
Resumo:
In this paper, a novel application of solid acid catalysts in the Beckmann rearrangement of E,E-cinnamaldoxime in the synthesis of an important heterocyclic compound; isoquinoline is reported. E,E-Cinnamaldoxime under ambient reaction conditions on zeolite catalysts underwent Beckmann rearrangement to produce isoquinoline in yields of ca. 86–95%. Cinnamonitrile and cinnamaldehyde were formed as by-products. LaH-Y zeolite produces maximum amount of the desired product (yield 95.6%). However, the catalysts are susceptible for deactivation due to the basic nature of the reactants and products, which neutralize the active sites. H-Y zeolite is more susceptible (22% deactivation in 10 h) for deactivation compared to the cerium-exchanged counterpart (18% deactivation in 10 h). Thus, the optimal protocol allows isoquinoline to be synthesised in excellent yields through the Beckmann rearrangement of cinnamaldoxime. The reaction is simple, effective, does not involve any other additives, and environmentally benign.
Resumo:
Antioxidants are substances that when present at low concentrations compared to that of an oxidisable substrate significantly delays or inhibits oxidation of that substrate in food products or in living systems. Antioxidants are either endogenous to the body or derived from the diet. Several types of synthetic antioxidants like BHT, BHA, TBHQ etc. are also used in the food industry. However, findings and subsequent publicity has fostered significant consumer resistance to the use of synthetic food additives as antioxidants, colourants etc. and therefore food industry is in search of potential natural antioxidants from edible sources.The major dietary sources of antioxidant phytochemicals are cereals, legumes, fruits, vegetables, oilseeds, beverages, spices and herbs. In the present study, we have focused on rice bran and its byproducts. Rice is one of the oldest of food crops and has been a staple food in India from very ancient times. It is also the staple food for about 60% of the world's population. Rice bran is a byproduct of the rice milling industry and is a potential commercial source of a healthy edible oil viz. rice bran oil and a variety of bio-active phytochemicals.Defatted rice bran (DRB), a byproduct of rice bran oil extraction, is also a good source of insoluble dietary fiber, protein, phytic acid, inosito I, vitamin B and a variety of other phytochemicals. Though the antioxidant potential of DRB has been demonstrated, it still remained a relatively unexplored source material, which demanded further investigation especially with regard to its detailed phytochemical profile leading to practical application. The focus of the present investigation therefore has been on DRB primarily to establish its phytochemical status and feasibility of using it as a source of bio-active phytochemicals and natural antioxidants leading to value addition of DRB otherwise used as cattle feed. To gain a better understanding of the value of rice bran as a source of phytochemicals, five popular rice varieties of the region viz. PTB 50, PTB 39, PTB 38, JA Y A, and MO 10 and a wild variety (oryza nivara) that is mainly used for medicinal applications in traditional ayurvedic system were characterized along with commercial samples of rice bran. The present study also explains the feasibility of a process for the extraction, enrichment, and isolation of antioxidant compounds from DRB. The antioxidant potential of the extracts were evaluated both in bulk oils and in food relevant model emulsions, using standard in vitro models. Radical scavenging effects, indicative of possible biological effects, were also evaluated.
Resumo:
In this paper, we present a laser-induced photoacoustic study on the photostability of laser dye Coumarin 540 doped in PMMA matrix and modified by the incorporation of low-molecular weight additives. The dependence of photostability of the dye on various experimental conditions, such as nature of solvents, incident optical power and dye concentration, is investigated in detail. The activation rates for the bleaching process are calculated for different concentrations and they suggest the possibility of two distinct mechanisms responsible for photodegradation. Further, analysis of the data confirms the linear dependence of photodegradation on the intensity of incident radiation. The role of different externally influencing parameters, such as wavelength and modulation frequency of incident radiation, is also discussed.
Resumo:
This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.
Resumo:
With the increase in population, housing and construction of various facilities have been a problem with urbanization. Having exhausted all the trouble free hand, man is nowon the lookout for techniques to improve areas which were originally considered uninhabitable. Thus this study is based on the nature and engineering behavior of soft clays covering long stretches of coastal line and methods to improve their geotechnical properties .The main aim of the present investigation is to study in detail the physical and engineering behavior of the marine clays of Cochin. While it is well known that the marine clays have been posing numerous problems to foundation engineers all along, the relevant literature reveals that no systematic and comprehensive study has been attempted to date. The: knowledge gained through the study is suitably used to improve these properties with appropriate additives.
Resumo:
The primary aim of this work has been to prepare efficient and cost effective polymer bound antioxidants by direct’ attachment of conventional antioxidants to a modified polymer. Due to the importance and easy availability of natural rubber in Kerala, it is proposed to make use of low molecular weight natural rubber as the polymer substrate for binding the antioxidant in most cases. The molecular weight of such low molecular weight natural rubber can be easily manipulated by varying the time of mastication, UV—irradiation etc. Further, the bound antioxidant may also get vulcanized during the vulcanization of the elastomer to which it is added, making the antioxidant non—volatile and non extractable. Several methods are proposed to be investigated for attaching the antioxidant to the low molecular weight natural rubber such as modified Friedel-Craft's alkylation reaction, binding during UV—irradiation, binding during aggressive mastication etc. The efficiency of such rubber bound antioxidants is proposed to be compared with that of conventional antioxidants in terms of volatility, extractability in solvents, ageing resistance etc. Naturally occuring antioxidants such as cardanol, are also proposed to be modified by binding them to low molecular weight natural rubber. The study is undertaken with the intention of generating a class of bound antioxidants which can be used in elastomers for aggressive and long term application.
Resumo:
The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.
Resumo:
The overall objective of the present study was to develop a novel and economic reclaiming process that does not adversely affect the quality of rubber and to investigate methods of utilising the reclaim. Since waste latex products represent a potential source of high quality rubber hydrocarbon, it was decided to develop a process based on such latex wastes. The study revealed that latex reclaim could replace raw natural rubber upto about 50 per cent of its weight without any serious deterioration in mechanical properties.
Resumo:
The main objectives of the investigations reported in the present thesis are the following: (1) to find out some industrial wastes as cheaper additives to augment the air-blowing polymerization process of bitumen. This will bring down the cost of production of industrial bitumen which can be applied for the manufacture of bitumenous paints, roofing and flooring materials etc. (2) to find out suitable promoters for the above additives. This will bring down the consumption of the additives (3) to help in the industrial pollution control (4) to investigate the usefulness of the industrial bitumen produced in the production of bituminous paints (5) to find out thekinetic parameters of the reactions invovled with different additives. This is essential for the design, construction and operation of new industrial bitumen plants using the additives investigated. This will also enable us to establish the mechanism of the reactions involved in the process
Resumo:
Unprocessed seafood harbor high number of bacteria, hence are more prone to spoilage. In this circumstance, the use of spice in fish for reduction of microorganism can play an important role in seafood processing. Many essential oils from herbs and spices are used widely in the food, health and personal care industries and are classified as GRAS (Generally regarded as safe) substances or are permitted food additives. A large number of these compounds have been the subject of extensive toxicological scrutiny. However, their principal function is to impart desirable flavours and aromas and not necessarily to act as antimicrobial agents. Given the high flavour and aroma impact to plant essential oils, the future for using these compound as food preservatives lies in the careful selection and evaluation of their efficacy at low concentrations but in combination with other chemical preservatives or preservation processes. For this reason they are worth of study alone or in combination with processing methods in order to establish if they could extend the shelf-life of foods. In this study, the effect of the spices, clove, turmeric, cardamom, oregano, rosemary and garlic in controlling the spoilage and pathogenic bacteria is investigated. Their effect on biogenic amine formation in tuna especially, histamine, as a result of bacterial control is also studied in detail. The contribution of spice oleoresin in the sensory and textural parameters is investigated using textural profile analysis and sensory panel. Finally, the potential of spices in quality stabilization and in increasing the shelf–life of tuna during frozen storage is analysed
Resumo:
The present study led to the recognition of Natrinema sp. BTSH 10 isolated from saltern ponds, as an ideal candidate species for production of gelatinase, which was noted as a halozyme capable of showing enzyme activity in the presence of 15% NaCl. Results obtained during the course of the present study indicated potential for application of this enzyme in industrial catalysis that are performed in the presence of high concentrations of salt. The enzyme characteristics noted with this gelatinase also indicate the scope for probable applications in leather industry, meat tenderization, production of fish sauce and soy sauce. Since halophilic proteases are tolerant to organic solvents, they could be used in antifouling coating preparations used to prevent biofouling of submarine equipments. The gelatinase from haloarchaea could be considered as a probable candidate for peptide synthesis. However, further studies are warranted on this haloarcheal gelatinase particularly on structure elucidation and enzyme engineering to suit a wide range of applications. There is immense scope for developing this halozyme as an industrial enzyme once thorough biochemistry of this gelatinase is studied and a pilot scale study is conducted towards industrial production of this enzyme under fermentation is facilitated. Based on the present study it is concluded that haloarchaea Natrinema sp. that inhabit solar saltern ponds are ideal source for deriving industrially important halozymes and molecular studies on enzymes are prerequisite for their probable industrial applications. This is the first time this species of archaea is recognized as a source of gelatinase enzyme that has potential for industrial applications.