983 resultados para LINGUAL GLANDS
Resumo:
The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.
Resumo:
Pathological changes in the vermiform appendix harbouring tapeworm's proglottides are reported. Marked local (tissue) eosinophilia in the stroma of the mucous coat and to a less degree in the sub-mucosa and around the vessels in the inner circular layer of the muscular coat is the essential change observed. Peculiar changes such as an striking increase in the volume of the mucus-producing goblet-cells either in the epithelium covering the free surface or in the glands of Lieberkühn, as well as new epithelium atypical in form and arrangement were noticed in direct connection and likely induced by the tapeworn as a foreign body (mechanical injury). The local (tissue) eosinophilia probably represents an anaphylactoid response to foreign proteins originating in the tapeworm. Acute appendicitis in its recognized varieties such as appendicitis superficalis catarrhalis, a. s. exulcerans, a. s. haemorrhagica, a. phlegmonosa, and a. phlegmonosa-ulcerosa could be microscopically excluded. It seems, however, that local (tissue) eosinophilia when particularly widespread is able to give clinical symtoms suggestive of acute appendicitis.
Resumo:
1. The authors preconize the use of Folin-Ciocalteu's reagent in the colorimetric determination of reducing cortcosteroids. 2. The reaction follows Beer's law in the range 0-50 μg of 11-desoxycorticosterone. 3. Determinations made in human urine and adrenal glands of rats and guinea pigs are comparable with results obtained by other methods.
Resumo:
The production of hyperglycemia during the acute phase of scorpion poisoning produced by T. bahiensis in dogs is confirmed now. The highest degree on average, was reached 10 minutes after the injection of venom. In our hands, the previous bilateral adrenalectomy did not avoid the hyperglycemia. The average of the blood sugar level has been similar to that observed in dogs with adrenal glands, the highest blood sugar level was also registered after 10 minutes. The hyperglycemia obtained in adrenolectomized dogs is, probably, due to the liberation of Sympatin (Nor-adrenalin and adrenalin) as a consequence of the central excitation by the poison on the hepatic nerves and other ganglionar terminations of the Sympathetic Nervous System. Our present researches suggest that the venom has adrenergic action besides the central action.
Resumo:
In the present paper we studied the mechanism of the hyperglycemia and hypertension evoked by the intravenous injection of scorpion venom (Tityus bahiensis) in the dog. We used 34 dogs, of both sex, weighing between 4.3 to 22 kg. These animals were divided in 3 groups and the following experiments were performed: in the first group (8 dogs) the animals were adrenalectomized after the intravenous injection of chlorpromazine; in the second group (16 dogs) the animals were injected with ganglionic blocking drugs (9.295 Ciba and hexamethonium); in the third group (10 dogs) the naimals were injected with dibenamine, and in 3 of them the adrenal glands were removed. The dogs of each group were injected intravenously with aqueous extract of 2 telsons of scorpion/kg; the average weight of each telson was 6,5 mg. The following results were obtained: 1) The hyperglycemia evoked by scorpion venom, in adrenalectomized dogs, was inhibited by chlorpromazine; 2) Ganglionic blocking drugs (9.295 Ciba and hexamthonium) were inefective as far as the hyperglycemic and pressor effects of venom are concerned; 3) In the animals treated with dibenamine, the venom produced a fall in blood pressure, both in the controle and in the adrenalectomized. The present experiments suggest that the scorpion venom has, besides the central action already described by other investigators, an adrenergic action, very similar to the adrenaline. On basis of our experiments we think that the adrenergic action is responsible, in part, by the productrion of hyperglycemia and hypertension.
Resumo:
After the observation of many thousands of histological sections of the endocervical mucosa it became evident that its columnar cells present a great variety of aspects not only those of the surface of the canal but also those of the glands. A classification of these cells was made taking into account the staining affinity, the intensity staining of the cytoplasm, the presence or absence of cilia, the shape and location of the nucleus. The various combinations of these different data made possible the characterization of 26 types of cells which we labelled by the alphabetical letters. Two hundred and fifty cervices obtained by cervical amputation and by hysterectomy were studied. The uteri presented lesions in the course of routine laboratory examination. In each of the 250 histological sections there were specifically counted 2,000 columnar cells which cover the cervical canal and 2,000columnar cells which form the glands. A graphic representation of the frequency of both the superficial and glandular columnar cells was presented; this was given the name EPITHELIOGRAM. The variation of the cellular "composition" of each epithelium is discussed and the frequency of the various cellular types after the count of one million of cells is presented.
Resumo:
In the second part of this paper we nalysed the correlation between the clinical pathological alterations and the sum of the types of columnar cells of 300 histological sections of cervix. Fifty histological sections of normal cervix of sexually mature women were selected and considered as normal in pattern. The specific counts of the columnar cells which line the endocervical mucosa and those of the glands of 50 normal cervices were compared with other similar counts made in 50 histological sections of cervices of old women and emphasized the differences. Comparisons were made also between 50 normal cervices and 50 sections of cervices with chronic inflammation, 50 cervices with epidermoid metaplasia and 50 cervices with myoma of the corpus. Counts were made from 50 cervices of patients who on the occasion of the surgical operation were in the proliferative phase of the menstrual cycle; these were compared with the counts of 50 cervices of uteri in the luteal phase. Finally, the numerical frequency of the following data encountered in the 300 cervices was recorded: 1. aspects of the ectocervical epithelium; 2. number of Nabothian cysts; 3. number of cervical glands; 5. number of deliveries and 6. aspect of the material within the cervical canal.
Resumo:
The Embioptera are rather generalized insects whose internal anatomy is simple and not subject to great modifications. For this reason these insects form an ideal group for elementary anatomical and histological studies (fig. 2). The digestive tract is a long, simple tube without convolutions or diverticulae from the buccal cavity to the rectum. The buccal structures are of the chewing type. The oesophagus and ingluvia are differentiated only by slight dilation of their walls. In nymphs and females the proventriculus is very distinct due to folds which flatten as the structure becomes packed with food. The enteron is the largest in such forms and in both sexes limited caudally by the Malpighian tubules. The proctodeus has six large rectal papillae. The nervous system is complete with only the fifth abdominal segment lacking a ganglion in the metathorax includes the ganglion of the first abdominal segment. The brain exhibits very clear structure in histological sections. The tracheal system includes two pairs of thoracic spiracles and eight abdominal pairs. Only th metathoracic spiracle has an air expiration function; all others serve for inspiration. Various structures in the spiracles protect the atrium. The circulatory system includes a long, simple dorsal vessel which extends forward from the ninth abdominal segment into the cranium. It opens anteriorly near the circumoesophageal connectives. The dorsal vessel has a pair of ostia and valves corresponding to each abdominal and thoracic segment. It lacks the diverticulae or folds commonly found in more highly evolved insects. The excretory system is represented by Malphighian tubules, pericardial cells, and fat-body. The number and disposition of Malpighian tubules is variable within the order. The pericardial cells are localized around the entire dorsal vessel up to the opening of the aorta in the head. The fat-bodies form compact layers in the dorsal and ventral regions of the body. In males they are more developed in the abdominal region. The mandibles, maxillae, and salivary glands are of a simple type with very few cytological modifications. Only the salivary glands which extend into the mesothoracic region show appreciable specialization. The reproductive system is bi-sixual and shows considerable sexual dimorphism. Males have five pair of testes with a metameric disposition, two distinct ducts, two epidymis, and the ejaculatory organs. The accessory glands vary in number and size and open in the anterior portion of the ejaculatory duct. The female reproductive organs are of the panoistic type. The system includes five pairs of ovarioles, two long paired oviducts a small, unpaired oviduct and the spermatheca which opens in the vagina. Reproduction usually involves a union of male and female gametes, and eggs are usually laid in clusters attached to a substrate.
Resumo:
Aedes fluviatilis is susceptible to infection by Plasmodium gallinaceum and is a convenient insect host for the malaria parasite in countries where Aedees aegypti cannot be maintained in laboratories. In South America, for instance, the rearing of A. aegypti the main vector of urban yellow fever, is not advaisable because of the potential health hazard it represents. Our results of the comparative studies carried out between the sporogonic cycle produced with two lines of P. gallinaceum parasites into A. fuviatilis were as follows. As proved for A. aegypti, mosquito infection rates were variable when A. fluviatilis blood-fed on chicks infected with and old syringe-passaged strain of P. gallinaceum. Oocysts developed in 41% of those mosquitos and the mean peak of oocyst production was 56 per stomach. Salivary gland infections developed in about 6% of the mosquitos. The course of sporogony was unrelated to the size of the inoculum administered to chicks or to the route by which the birds were infected. The development of infected salivary glands was unrelated to oocyst production. Sporogony of P. gallinaceum was more uniform when mosquitos blood-fed on chicks infected with a sporozoite-passaged strain. Oocysts developed in about 50% of those mosquitoes and the mean peak of oocyst production was 138 per stomach, with some individuals having as many as 600-800 oocysts. Infected salivary glands developed in a mean of 27% of the mosquitos but, in some batches, was a high as 50%. Patterns of salivary gland parasitism were similar to those of oocyst production. The course of sporogony of P. gallinaceum in A. fluviatilis is analized in relation to degree of parasitemia and gametocytemia in the vertebrate host.
Resumo:
Precocene II, added to the meal of fourth-instar larvae of Rhodnius prolixus (25 mug/ml of blood), induced an in crease in the duration of the molting cycle. This effect was related to the decrease of both the nuclear area of the prothoracic gland cells and the mitotic activity in epidermal cellS. juvenile hormone analogue applied topically (60 mug/insect) together with Precocene II treatment avoided atrophy of the prothoracic glands and induced a higher number of epidermal mitosis accelerating the time of subsequent ecdysis. A possible relationship between juvenile hormone and production of ecdysone is discussed.
Resumo:
Epimastigotes multiplying extracellularly and metacyclic trypomastigotes, stages that correspond to the cycle of Trypanosoma cruzi in the intestinal lumen of its insect vector, were consistently found in the lumen of the anal glands of opossums Didelphis marsupialis inoculated subcutaneously with infective feces of triatomid bugs.
Resumo:
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Resumo:
This paper deals with the morpholgy of Pomacea lineata (Spix, 1827) collected at its type locality. The shell is globose, moderately heavy, horn-colored with brown spiral bands; apex subelevated; 4 - 5 rounded whorls increasing in diameter rather rapidly, separated by deep suture. Aperture large and ovoid; outer lip sharp; umbilicus narrow and deep; operculum concentric, corneous. Ratios: shell width/shell length = 0.74 - 0.83 (mean 0.78); spire length/shell length = 0.10 - 0.18 (mean 0.13); aperture length/shell length = 0.70 - 0.77 (mean 0.73). The animal is longisiphonate. Renal organ brownish with marked invagination at its right edge. Ureter elongated with its long axis transverse to the main axis of the kidney. The radula is taenioglossate (2.1.1.1.2) and has on average 35 transverse rows of teeth. The form and arrangement of the radula teeth are nearly the same as in other Ampullariidae. The testis is cream-colored and lies in the first three whorls of the spire. Spermiduct uniformly narrow, running to the base of the spire. Seminal vesicle whitish, slightly pressed dorsoventrally. Prostate cylindric and thick, similar in color to the testis. Penis whiplike, with a closed circular spermiduct. Penis pouch ovoid completely envelping the penis. Penis sheath elongated, broad prosimally, tapering distally. Its inner surface shows a longitudinal channel along its proximal half and two glands, one on the middle and the other apical. Ovary composed of branched whitish tubules situated on the surface of the digestive gland. Oviduct slender running along the columellar axis toward the base of the spire. Seminal receptalble tubiform, thick-walled and rounded proximally. Albumen gland large, pink, enclosing the receptacle and the spiral capsule gland. Vestigial male copulatory apparatus (penis and its sheath) present in all females examined.
Resumo:
Extirpation of endocrine organs - a classic maneuver in hormonal research - has been difficult or impossible in the case of the prothoracic glands (PG) of insects. In larval and pupal Lepidoptera the glands are virtually inaccessible unless one sacrifices the insect. Even then, the PG are not easy to remove in their entirety. Consequently, in order to obtain viable preparations lacking PG, one costomarily makes use of abdomens isolated by litigation or surgery.
Resumo:
The results presented in this paper clearly indicate that precocene and azadirachtin are effective inhibitors of moulting and reproduction in the hemipteran Rhodnius prolixus. The time of application is important and only applications of these substances early in the intermoulting period cause their effects in nymphs. The inhibition of moulting is fully reversed by ecdysone therapy. Precocene and azadirachtin also affected drastically the oogenesis and egg deposition in this insect. Precocene-induced sterilization is reversed by application of juvenile hormone III. However, this hormone is unable to reverse the effect of azadirachtin on reproduction. Ecdysteroid titers in nymphs and adult females are decreased by these treatments. In vitro analysis suggest that precocene and azadirachtin may act directly on the prothoracic glands and ovaries producing ecdysteroids. Based on these and other findings the possible mode of action of these compounds on the development and reproduction of Rhodnius prolixus is discussed.